
Alternetive Technologies

R.A.M.

Relational Access _Manager

Users Manual

DRAFT VERSION 4.1

COPYRIGHT 1987, Alternative Technologies, All Rights Reserved.

ALTERNATIVE TECHNOLOGIES,
150 ~ELKER STREET, SUITE E,

SANTA CRUZ, CALIFORNIA 95060,
408/425-1859

NOTICE: This document contains subject matter proprietary to
Alterruttive Technologies and is covered by an existing non­
disclosure and non-competition agreement between ORA/Pacific Bell
and Alternative Technologies.

Do not distribute or convey any information contained herein
without written authorization from Alternative Technologies.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

ORGANIZATION OF 'l'HIS MANUAL
INTENDED AUDIENCE
SOME NOTES ON TERMINOLOGY

CONTENTS

PART I: INTENT AND PHILOSOPHY

l.O Introduction
1.1 Basic Concepts

PART II: TUTORIAL

2.0 Introduction
2.1 overview

2.1.l What RAM Will Do
2.1.2 What RAM won't Do

2.2 Generalizing Database Access
2.3 RAM Envirornnent Roles
2.4 RAM Support of Application Data Structures

2.4.1 Buffer Definitions
2.4.2 Guidelines for Design of RAM Compatible C

Structures ·
2.5 Design Considerations for OML Commands

2.5.1 Writing and Testing Commands
2.5.2 DML Commands as Functions

2.6 Guidelines to Migrating an Existing Envirornnent to RAM
2.7 A Simplified Illustration of the Routines
2.s A Complete RAM Program in c

PART III. REFERENCE MANUAL

3.1 The Constants File
3.2 Initialization File
3 • 3 Ram ini t ()

3.3:o Invocation and Declarations
3.3.1 Syopsis
3.3.2 Input Arguments
2.3.3 Output Arguments
3.3.4 How to call ram_init()

3. 4 Ram close()
3.4:o Invocation and Declarations
3.4.1 Syopsis
3.4.2 Input Arguments
3.4.3 Output Arguments
3.4.4 How to call ram close()

3.5 Ram bind{) -
3.5:o Invocation and Declarations
3.5.1 Syopsis
3.5.2 Input Arguments
3.5.3 Output Arguments
3.5.4 How to call ram_bind()

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

3.6 Ram query(} ·
3.6:o Invocation and Declarations
3.6.l Syopsis
3.6.2 Input Arguments
3.6.3 output Arguments
3.6.4 How to call ram query()

3. 7 Ram nextl::>uf () -
3.770 Invocation and Declarations
3.7.l Syopsis
3.7.2 Input Arguments
3.7.3 Output Arguments
3.7.4 How to call ram nextbuf()

3.8 Ram_setinfo() - _
3.8.0 Invocation and Declarations
3.8.l Syopsis
3.8.2 Input Arguments
3.8.3 output Arguments
3.8.4 How to call ram setinfo()

3.9 Ram_getinfo() -
3.9.0 Invocation and Declarations
3.9.l Syopsis
3.9.2 Input Arguments
3.9.3 output Arguments
3.9.4 How to call ram getinfo()

3.10 Ram loaddefs()
3.10.0 Invocation and Declarations
3.10.l Syopsis
3.10.2 Input Arguments
3.10.3 output Arguments
3.10.4 How to call ram load defs()

3.11 Ram setdefs() - -
3.lI.o Invocation and Declarations
3.11.1 Syopsis
3.11.2 Input Arguments
3.11.3 output Arguments
3.11.4 How to call ram set def()

3.12 Ram getobj() - -
3.12.o Invocation and Declarations
3.12.l Syopsis
3.12.2 Input Arguments
3.12.3 output Arguments
3.12.4 How to call ram getobj()

3.13 Ram setobj () -
3.13.o Invocation and Declarations
3.13.l Syopsis
3.13.2 Input Arguments
3.13.3 output Arguments
3.13.4 How to call ram_setobj()

3.14 Ram setexc()
3.14.0 Invocation and Declarations
3.14.1 syopsis
3.14.2 Input Arguments
3.14.3 output Arguments

' 3.14.4 How to call ram setexc()

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

PART :tV; ENVIRONMENT SPECIFICS

4.1 Vendor Database
4.1.l Britton Lee IDM
4.1.2 Oracle

4.1.2.1 General Information
4.1.2.2 Utilities

4.1.3 Sybase
4.1.4 RTI Ingres

4.2 Operating Systems
4.2.l VAX/VMS
4.2.2 Unix System V
4.2.3 MSDOS

PART V: '!'HE EXTENDED PRODUCT

5.1 Application Transaction Management and concurrency
5.2 RAM Transaction Definition Language

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

--

Relational Access Manager - User's Guide, V4.l 5

ORGANIZATION OF THIS MANUAL

This document is organized into three parts. Part 1·
describes the intent and philosophy behind the Relational Access
Manager or RAM. Part II provides a tutorial on using RAM,
focusing on the typical application structure, the definition of
the kinds of data structures which are supported, and bow the
relational database data manipulation languages (DML) such as
QUEL and SQL are supported so as to provide "database functions".
Part III is a reference manual which provides a detailed
description of each RAM function call; its arguments, and an
example of how the function is used.

INTENDED AUDIENCE

This document is directed towards three audiences: those
having general interest, the DML developer, and the C
applications developer. These last two roles are defined in more
detail in Part II, Section 2.4.

Parts of this document (primarily Part I) are intended to
provided all interested parties with some general understanding of
the purpose and benefits of RAM.

The DML developer will find portions of Part-II and most of
Part IV of interest. Part III may also be of interest. The DML
developer should have a thorough understanding of the supported
vendor database management system, the specific DML supported
(such as SQL, IDL, or QUEL) and of the specific database schema
implemented on the vendor database.

The C applications developer will be most interested in
portions of Part II and most of Part III. They are directed to
the c applications developer who wishes to access the database
without learning the details of the vendor specific accessing
methods or the vendor supplied data manipulation language (DML).
The application developer does not need to know the details of
the vendor specific relational database accessing methods such as
RTI's EQUEL, Oracle's PRO*C, Britton Lee's IDMLIB, or sybase•s
DBLIB. However, the application programmer who uses RAM should
be familiar with database concepts such as the purpose of
relational data manipulation languages, data dictionaries,
binding, and compiled queries or scripts. They need not be
proficient in these subjects.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

SOME NOTES ON TERMINOLOGY

Throughout this document we will use certain terms. .These
terms are defined in this section.

* DML Data Manipulation Language. A language for
manipulating database data such as SQL, IDL, or QUEL.

* table - a data structure having columns and rows, with
each entry in a given column having identically the same
internal structure.

6

* flat data structure - a flat data structure is one for which
the location of each field within the data structure may be
represented by a certain number of bytes (called an offset)
from the beginning of the data structure. The value of the
offsets for a given field do not change regardless of the
number of occurrances of the data structure.

* vendors database - since RAM supports several relational
database managements systems, we will refer to each of them
as the vendor database.

* integer size - references to four byte integers should be
understood by C programmers as data type long. Fortran
programmers should declare such integers as INTEGER*4.

* DML statements - DML statements are single statements in the
vendor supplied DML.

* DML commands - DML commands are a named group of DML
statements. DML commands may be stored in the database or
in host files in either compiled or text format. DML
commands may contain formal paramaters. They are invoked by
name and a delimited list of parameter values must be passed
to the database management system. DML commands eliminate
the need to re-enter DML statements whenever constants
within the DML statements change, as the constants may be
declared as parameters and the values set through parameter
substitution at the time of invocation. The vendor may also
supply a means for optimizing performance via DML commands
by compiling and/or parsing the DML statements in advance.
For vendor specific examples, see Part IV, Section 4.1.

* stored commands - stored commands are DML commands which
have been stored in the database. For vendor specific
examples, see Part IV, Section 4.1.

* queries - queries refer to DML statements passed explicitly
by the calling program. RAM will allow this mode of
accessing the vendor database, but it is not recommended for

' reasons which are explained in later sections.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 7

* channels - channels refer to any of cursors, runtime control
blocks, channels, or communications control areas, as the
specific vendor uses these to provide an independent stream
to the database.

argument - by an argument, we will mean a c function·call
argument only.

* parameter - by a parameter, we mean a value passed to a
DML command and which replaces a variable in a statement of the
DML command at execution time. Parameters are always supplied
in a specific order.

* logical device - the device driver through which to
communicate with the database. This is, effectively, where
the database resides.

* database instance - database management systems frequently
support access to logically and sometimes physically
distinct databases, each maintained by the same database
management system code. Each is called an instance of the
database.

* database name - the named location of a database instance,
such as a directory or path.

* tokens - a token is a constant which is referenced by
name. The name of the token is case sensitive.

* environment value - a variable whose value is set according
to the value in the ram environment variables
initialization file named "init.ram" by default.

* binding - binding refers to the process of associating a
symbol with a particular value. The value may be a data
value, an address, a descriptor, or even another symbol.
The mechanism by which binding is accomplished may vary.
For example, binding may occur at compile time via variable
being assigned specific hard-coded values within a program.
Binding may occur at link-time, as when the linker resolves
address references between modules of a program. Binding
may also occur at run-time, as when the value of a variable
is determined through interactive input.

* fixed value fields - fixed-value fields are fields (used as
DML command parameters) which are not expected to change in
value from row-to-row when multiple rows are retrieved from
the database or when multiple rows are inserted into the
database, or when a DML command parameter does not change
for multiple executions of the DML command.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE W:CTHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l s

* variable value fields - variable-value fields are fields
(used as DML command parameters) which are expected to
change in value from row-to-row when multiple rows are
retrieved from the database or when multiple rows are
inserted into the database, or when a DML command parameter
changes values for each of multiple executions of the DML
command.

* non-procedural a non-procedural language provides a
means for specifying the goal of a function rather than the
sequence of events which will accomplish that goal. Non­
procedural languages are usually highly optimized for set­
at-a-time processing and tend to be relatively inefficient
at record-at-a-time processing. · ·

* procedural a procedural language requires the user
to specify the sequence of events by which the desired goal
will be achieved.

* set-at-a-time processing - a set is a collection as in a
collection of records. Each member of the collection shares
a common set of properties. Set-at-a-time processing is
simply the processing of an entire collection from one
statement in a non-procedural language.

* transaction - a transaction is a unit of data consistency~
If the need to insure correctness of data requires that
steps from two transactions are executed in some predefined
order, then these two transactions are in fa~t.a single
transaction.

* concurrency - the degree to which multiple users of a
database may simultaneously be actively accessing and
updating data in the database.

* integrity - there are several kinds of integrity as the term
is applied to databases. Each refers to a set of rules by
which the correctness of the data may be maintained or
evaluated.

* mirroring a technique for writing data
simultaneously to two disk drives so that a copy is
available in the event of disk drive failure. Database
management systems often support such recovery techniques to
some degree.

* hot standby a database instance which contains a
mirrored copy of a primary database instance, thus being
available on-line in the event that the primary database
instance fails or is corrupted in some manner.

* soft failover detection in software of a failure to

'

communicate with other software or hardware, and the
automatic switching to a backup of the software or hardware.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l.

* database schema - the particular manner in which data
elements in a database are organized.

* object oriented programming - a technique for the
development of highly flexible and maintainable code. An
excellent reference is Object Oriented Programming by Brad
Cox.

DOCUMENT CONVENTIONS

Throughout this document we follow several typographical
conventions.

UPPER CASE is used to indicate a defined constant or token.
The values of tokens are defined in the file ram_tokens.h.

undelines are used to indicate an argument to a C function.
Whenever arguments are referenced in Part II, the relevant
function call will be noted or will be clear from context.
The reader is encouraged to ref er to the appropriate section
of Part III for more detail regarding individual arguments.

c function names are designated by including a pair of _
parenthesis after the name of the function, for example
"function() 11 •

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

-·

Relational Access Manager - User's Guide, V4.1 10

PART :I

:INTENT AND PHILOSOPHY

1.0 :Introduction

This document presents the information that is needed to
make use of the RAM in order to access the
supported vendor's relational database (see Section 4.1). The
intent of this library of routines is to provide productivity
tools and uniform access tools for those who access the vendor
database.

There are two versions of the RAM:

* the Standard Product which consists of a library of (in
most environments) sharable functions; and

* the Extended Product which provides access to the
library via a server process with various extensions
such as global transaction management and significantly
more robust error recovery.

The advantages of the RAM standard Product include:

* ease of programming

* programmer productivity

* database administrator productivity

* personnel management is improved

c programmers do not have to know SQL or other
data manipulation languages

SQL and database •gurus• do not have to know c or
other development languages, -'

* object-oriented interface

* improved datatype support

* improved per task performance

bind and parse time reduced

* flexibility

data dictionary not bound to application

AT CONF:IDENTLAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user's Guide, V4.1

•

* improved maintenance

code and database queries are cleanly separated

changes in data dictionary or database queries do
not force recompiling or relinking

RAM code can be a shared library or a server so
all processes share it

* applications are smaller and more uniform

* improved system performance'

smaller tasks mean fewer page faults

* vendor database independent code is encouraged

Some of the advantages the RAM Extended Product are:

* improved system performance

transaction manager removes contention between
tasks before it happens

smaller tasks mean fewer page faults

* improved personnel management

an application system database administrator can
control transaction management separately from
application code design and development

* task prioritization

* task-level transaction management

* uniformly managed system-wide shutdown

* automatic deadlock recovery

* time-out and asynchronous interrupt support

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

11

Relational Access Manager - User's Guide, V4.l 12

1.1 Basic concepts

In any software project involving relational database
management, not only must a supporting database schema be
designed and loaded with data, but a nUlllber of access routines
will be implemented in order to allow application programs to
manipulate the database. These routines are usually
implementations of a specific application function rather than
re-usable tools. Common practice is to implement these routines
by writing them in a third-generation language and embedding the
DML statements in the source file. In order to handle these
foreign statements, the source files 4re "pre-processed" prior to
compilation.

There are several problems with this approach:

1. Because each of these routines has a specific rigid
function, they tend to proliferate.

2. The pre-compilation phase is cUlllbersome, adding a
development phase which is not always compatible with
software management tools.

3. The el!lbedded relational database language is "mixed" with
the third-generation language so that source code control is
difficult.

4. A programmer must know not only the third generation
language, but also the relational database language and the
characteristics of the pre-processor.

s. The programmer will have to obtain help in optimizing the
DML statements and then successfully translating the
statements into appropriate embedded statements in the
context of the third generation language code. This
requires a unique skill since the syntax of the DML when
el!lbedded in a third generation language may be quite
different than the syntax when the DML is used
interactively. Since the applications programmer and
database personnel are often in separate work groups with
different skill sets, this makes task division more
difficult when managing development, deployment, and
maintenance.

6. Source code must be recompiled and the entire system
relinked if there are any changes to the embedded relational
database statements.

7. such code is costly to move from one relational database
management system product to another.

8. The source code is "mixed" with the database schema. This
' last item is by far the most costly. Large applications will

consist of many "database access routines". When the

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user•s Guiae, v4.i

database administrator decides to modify the relational
database schema, each of these routines will have to be
examined to see if they now access some modified data
element in an inappropriate manner.

If the cost of this maintenance is high enough, changes to
the schema will be forbidden in order to avoid that cost, whether
it be time, expertise, or potential disruption of the business.
This coupling between application code and database schema
effectively removes on the primary benefits of a relational
database - it is supposed to be flexible.

The RAM is designed to eliminate these problems. It is
available in two forms: as a library ·(the standard product) and
as a server (the extended product). The standard product
provides a number of functions which can be called of the c
programming lanquage, and, in certain environments such as
VAX/VMS, from other lanquages as well. These functions isolate
the third generation lanquage code from the relational database
language code. They provide a standard interface for the
programmer to use in accessing the relational database.
FUrthermore, they isolate vendor specific relational features
from the application so that relational database management
systems vendors can be changed without modifying third generation
lanquage code. The server version of the product has a number of
features which are not available in the library. These are
described in Addendum A to this manual, which contains Part v,
and is available if you have purchased the Extended Product, ...

All this is done without sacrificing performance. The size
of applications is minimized by reducing redundant database
access code. The code is extremely portable across environments.
In effect, the intended flexibility of relational databases is
not only preserved, but extended to the application code. The
cost of maintenance is decreased, debugging time is reduced, and
neither the application programmer nor the database administrator
need not be concerned about coupling between the application and
the relational database. Each can do that portion of the work
which they know best.

The major emphasis of the design of the database access
manager is to satisfy the repeatedly stated requirement that
application programs be able to handle many different types of
data structures and multiple DML statements as a unit. In order
to achieve this aim, the concepts of object oriented programming,
in particular ''data abstraction••, have been used extensively.

The RAM has been written so as to maximize the efficiency
and simplicity of database access and updates (set-at-a-time and
non-procedural) as requested by applications (single record-at-a­
time and procedural). It makes extensive use of the data
dictionary so that changes to the database do not affect its
integrity. The use of scripts, DML commands, stored commands,
stored-programs, and stored procedures as may be supported by a
specific vendor, all provide a "call-by-name" syntax. For some

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 14

database products, the RAM eliminates constraints on what kind of
database language statement can be processed from within a so­
called stored command or procedure. For example, while Britton
Lee does support the creation of tables within stored commands,
RAM provides a means by which this may be accomplished. For
products which do not support stored procedures, scripts become
"virtual stored commands" which can be created and maintained
independently of either the application or the database,code and
reside on either the host file system or in the database.

It is not the purpose of the relational server nor of the
relational access routines to provide error checking which is
application-specific. For examp1e, the following are not
internal functions of the RAM: ·

* defining procedural qualifications of data prior to
writing to the database

* defining procedural qualifications of data prior to
acceptance of data retrieved from the database

* executing non-server related processing such as
application specific exception processing or mirroring
to host application files

The RAM accepts DML commands which are made specific by a
named access routine argument list (the message) and NOT by the
name of the function call. If access for a specific purpose to
the vendor database is accomplished through named.function calls,
co-mingling of data structures and control structures occur with
the degradation of the software architecture being the final
result.

The function of the RAM is to isolate the specifics of
database access from the application code, provide a means for
independently optimizing DML statements and commands, and promote
robust database access (e.g., standard error and recovery
handling, transaction management in the extended product).

In summary, the motivation behind the Manager is:

* to isolate database specific code,

* to hide the details of error processinq,

* to provide an easy method of manipulating data,

* to improve application developer productivity, and

* to improve system-wide performance

'

AT CONFIDENTIAL - DO NOT DISTlUBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

2.1 overview

PART II

'I'UTORIAL

15

The RAM is comprised of routines that enable the user to
manipulate the database. These functions can be called from C
programs in all supported environments and may be callable from
other languages in certain environments. They are documented in
Part III of this document. In this section, we will describe the
functionality of RAM. When RAM functions are referenced, we
encourage the reader to refer to the appropriate sub-section in
Part III for clarification.

2.1.1 What RAM Will Do

The RAM provides an interface between the application
program and the database. The purpose of these routines is to
increase coding productivity by minimizing the need to know
details of the accessing methods or of the schema of the database
being accessed. The major functions of the RAM include:-

* Opening the Database (Initialization)

* Binding of Variables

* Execution of Data Manipulation Language Statements

* Retrieval of Pending Data

* Closing the Database

The detailed elements of RAM functionality include, by product:

The Standard Product

* multi-channel initialization and termination

* input/output program variable binding

* binding to arrays of records or to records of arrays

* bind support for any "flat" data structure
including linked lists, trees, etc.

* multi-record reads

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

-·

Relational Access Manager - User's Guide, V4.l

* multi-record writes

* standard error processing

* c language procedural call interface

* user defined exception processing

* c language Object oriented call interface

16

Extended Product enhances fault tolerance, availability, and
recoverabilty through:

* automatic deadlock recovery

* asynchronous time-out and recovery

* automatic retry after errors

* table locking

* virtual stored commands (pre-parsed queries
not stored in the database)

* soft failover to a 'hot standby' database instance

* virtual record "lock:ing"

* an application level transaction definition language

* general application transaction management

2.1.2 What RAM Won't Do

While RAM will free the user from excessive concern with the
intricacies of database software, these routines can only
encourage good program structure and use of the relational
database. They can not force the user to write optimal code,
they do not generate code, nor do they insure that the database
schema is properly designed. Security issues are considered ~
ge in the domain of the database management system and in the
operating system. However, if the guidelines in this manual are
followed, the RAM will provide many< benefits.

For those users who wish to embed queries in the code, it
will be necessary to become fluent in one of the vendor supplied
data manipulation languages - QUEL, IDL, or SQL. This practice
is not encouraged.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 17

While the principal focus of the RAM is, in fact, the
execution of DML Commands, these routines contain no intelligence
whatsoever regarding the proper design and use of DML commands.
Full scope is given to user creativity (and/or destructiveness)
in this domain.

2.2 Generalizing Database Access

To those unfamiliar with the benefits of relational
databases (and non-procedural programming languages in general),
it might appear that the RAM routines_are too low level for
direct use by applications. However, the fact is that the
specific DML commands issued (or requested) by the application
serve to differentiate one call from another.

The coding of unique routines for each application DML
command is superfluous. Indeed, failing to isolate code from
data leads to maintenance inefficiencies (see the code fragments
below for examples, Figures 1, 2, 3, and 4). Each of the
examples that follow successively improve the localization of the
DML and thereby improve maintenance. In these examples, the
function names are intended to be representative of the kinds of
function calls required by a c interface to a relational database
and are those of any particular vendor.

In Figure 1, embedded DML is used explicitly in the code··and
a preprocessor (sometimes called a pre-compiler) is·used to
convert the lines preceeded by a special symbol into function
calls to the database. Some vendors allow the embedding of
certain statements by reference, so that they can be altered
during the run of the application. This is called dynamic DML.

,

relnames{)
{

}

$char name[16]r

$select $name=name from systables
{

printf("%s\n11 ,name)r
}

FIGURE 1
Pre-processor Embedded DML

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

In Figure 2, the programmer has coded the function calls to
the database directly but has hardcoded the DML statement as an
argument. This method is possibly prone to more errors, since ·
the proqra:mmer must learn how to use the database function call
interface correctly.

relnames()
{

char name[lSJ;

18

(void) parse(cursor,nseleot name from systables");
(void) exec(cursor);

}

(void) bind(cursor, 1,-CHAR, sizeof(name), name);
while (fetch(cursor) == SUCCESS)
{

}
printf(•%s\nn,name);

FIGURE 2
Embedding DML as Arguments

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user's Guide, V4.l l.9

Fiqure 3 shows essentially the same program as coded by a
programmer with more experience. Here the DML statement has been
isolated to a character strinq declaration.

'

relnames()
{

}

char name[l5];
char •query= "select name from systables";

(void) parse(cursor,query):
(void) exec(cursor);
(void) bind(cursor, 1, CHAR, sizeof(name), name);
while (fetch(cursor) == SUCCESS)
{

}
printf("ts\n",name);

FIGURE 3
Embedding DML as Data

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user's Guide, V4.l 20

Figure 4 shows the program with the data isolated even more
by creating a macro-defined symbol which the c pre-processor will
expand at compile time. Regardless of which of these methods is
used, the code becomes strongly coupled to both the
eccentricities of the DML (including bugs) and the database
design. This latter error is a severe one: changes to the
database design invariably lead to modifications of the
application code. If the cost of the application modifications
required to implement a change in the database design is great
enough, the database design becomes fixed. This eliminates· one
of the key benefits of a relational database, its mutability.

'ildef ine STATEMENT_lOO "select name from systables"

relnames()
{

}

char name[lS]r
char •query = STATEMENT_J.001

(void) parse(cursor,query)r
(void) exec(cursor);
(void) bind(cursor, 1, CHAR, sizeof(name), name);
while (fetch(cursor) -= SUCCESS)
{

printf("%s\n11 ,name);
}

FIGURE 4
Embedding DML as Preprocessor Data

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 21

The final code extract in Figure 5 show how the DML might be
removed from the code altogether if the database vendor supports
stored commands or procedures or scripts that can be stored in
the database and invoked by name. However, two problems remain.
First, the code surrounding the execution of the DML command is
sensitive to the particular DML statements within the· DML command.
Second, the linkage between the code data structures and the data
structures which the DML requires to interface to the vendor
database is defined within the code and remains to couple the
database schema to the application and vice-versa. · ·

/*
** Define "rel names" in.the DML or the RAM
** DML command-definition utility as:
**
** 1) define rel names
** 2) select name from systables
** 3) end define;
**
** Assuming the database supports stored procedures,
** the code then becomes:
**
*/

relnames{)
{

}

char name[15J;
char •stored cmd = "rel_names";

(void) parse{ cursor, stored cmd);
(void) exec(cursor); -
(void) bind(cursor, 1, CHAR, sizeof(name}, name);
while {fetch(cursor) == SUCCESS)
{

}
printf(nts\n", name);

FIGURE 5
Excluding Embedded DML

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

_.

Relational Access Manager - User's Guide, V4.l

The RAM removes these final obstacles to writing
applications which are maximally independent of the database
schema.

The philosophy promoted here is that the application has
responsibility for:

a. determining what data is sent to the database,

b. what to do with data returned from the database,

c. specifying in a functional sense only what is to be
done by the database,

and

d. NOTHING ELSE pertaining to the database.

22

The application code should not be required to know DML
specifics or the database design. At the same time, it is
understood that existing applications must be migrated to the
database environment and hence, the ability to use DML specific
code is not absolutely precluded by the routines described in the
functional specification below.

The use of DML commands is justified from the standpoint of
efficiency and database schema independence. They also provide a
measure of relational database support for object oriented
programming techniques. The justification for using DML commands
from an object oriented design standpoint is to be found in the
next section.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 23

2.3 RAM Environment Roles

A RAM environment creates clearly defined roles for
information systems personnel. These roles are separated by
function. Managers can employ and train individuals to meet the
specific needs of these roles. As a result, resource and budget
management becomes easier than when individuals must acquire
multiple skills. Highly trained relational database
professionals are hard to find and demand higher than average
salaries. The skills they possess should not be used for tasks
which a proficient c programmer can ac~omplish. Indeed, it is
extremely difficult to train an individual in the intricacies of
database design, DML coding, DML optimization, c coding, and the
application-specific functionality, let alone the larger numbers
of such personnel that are needed on medium- to large-scale RDBMS
projects.

RAM creates three significantly different roles for
programming professionals: the applications programmer, the DML
programmer, and the database administrator.

The appligations programmer writes code only in a non­
database language, such as c. When database access is required
by the design, he/she:

* specifies the functional DML requirements (though not
the DML) for the DML programmer,

* defines the input and output data structures,

* writes the RAM function calls and code skeleton, and

* specifies and codes any data structure allocation or
traversal functions (see Section 2.4.l below).

The ~ programmer takes over where the applications
programmer leaves off. This individual is the interface between
the applications programmer and the database administrator. They
must be familiar with the current database schema as defined by
the database administrator. He/she:

'

* converts the functional DML requirements into schema-
specif ic, optimized DML commands, ·

* insures that the applications programmer's input and
output data structures are properly interpreted by the
DML function,

* maintains the DML commands as the database schema is
altered,

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

and

* coordinates the load on the database with the database
administrator,

* implements the appropriate transaction management.

24

The database adininistrator has a much more traditional role.
He or she:

and

'

* designs/modifies the database schema to meet-the needs
of all applications,

* monitors/optimizes the load on database resources,

* manages database security,

* manages database recovery and availability.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

2.4 RAM Support of Application Data Structures:
For the Application Programmer

2.4.l Buffer Definitions

RAM supports a variety of data structures for input an4
output. On input of data, RAM will interpret the current
application input buffer (as passed in ram_query) using the
current input buffer definition. on output, RAM will use the
current output buffer definition to interpret and populate the
current application buffer with data from the database.

While there is only one kind of output data from the
database, there are two kinds of input data. Data from the
application can be moved into the database. This is the
reciprocal of output data. However, data can also be used to
qualify or control execution of DML commands. Input data is
better understood as the input arguments to a function than as a
record to be written to a file. The function may write to a
file. Whether it does or not, the function input arguments may
be used for conditional control inside the function.

Because non-procedural DML is not symmetric in the way it
handles input and output, this asymmetry is reflected to some
extent in RAM. While a call to ram_query() can handle multiple
input records and multiple output records, it is important to
remember that these are handled in a nested fashion with output
of multiple records possible for each input record. This
structure is reflected in the return codes from ram_query() and
ram nextbuf () as well as in the RAM code skeleton. For each
input record ram_query() executes all statements in the DML
command. If the DML command contains a statement which returns
data from the database, it is important to remember that more
than one row (record) can be returned from the database. This
fact forces the nested, asymmetric structure of ram_query().

25

Multiple records or occurrences may be organized in one of
three ways: as concatenated records, as arrays, or as a
dynamically allocated data structure. In the accompanying
examples, the memory map of data values shows field addresses
increasing from left to right, then top to bottom. In Example 1,
two three-element arrays (~ and ~) are shown. These fields
may be either populated from or read int;.o a table in the database
via a DML command.

'

NAME(l) NAME(2) NAME(3)
DATE(l) DATE(2) DATE(3}

Example l. Array Format

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 26

In Example 2, three records, each consisting of a name field
and a date field are shown. These fields may be populated from
or read into a database table via a DML command.

NAMEl DATEl
NAME2 DATE2
NAME3 DA'l'E3

Example 2. Record Format

The BIND TYPE argument in ram_bind() may be one of
RAM ARRAY, RAM RECORD, or RAM DYNAMIC. If the BINO..TXPE
argument is RAM ARRAY, the data fields are assumed to be in or
are output in array format (also known as column major) as in
Example l above. If the BIND TYPE argument is RAM RECORD, the
data fields are assumed to be in or are output in-record format
(also known as row major) as in Example 2 above.

If RAM DYNAMIC is used, data will be returned to the program
data space assuming an image of the database table involved is
appropriate. By an image of the database table is meant that the
lengths and datatypes are those as specified in the database data
dictionary and order of the columns is given by the DML select·or
retrieve statement involved. RAM_DYNAMIC is valid only for a
BUFTYP of RAM_OUT.

While these examples show each field and record contiguous
to the next, the application input or output buffer is not
constrained in this way. By adjusting the lengths and offsets
and the order in which each field is specified in the call to
ram_bind (or via the ram_buf utility), it is possible to •spread"
the fields in a record and even to overlap fields and records.
Some fields can be subfields of other fields with a little
concern for the field order in the buffer definition.

The only constraint is that buffers must be "flat data
structures". This means that every occurrence looks the same as
every other and that the addresses of all fields can be
consistently represented as an offset from a base address where
the base address is the address of the current input or output
record.

Ordinarily, record occurrences beyond the first are treated
as being offset from the end of the first by a fixed number of
bytes. However, there is a feature of ram_query which allows the
developer to create more complex data structures. This is done
by allowing the developer to pass as an arqument in ram query{) a
'function pointer to a developer-written function. The function
computes the base address of the next occurrence given the base
address of the current occurrence of the desired flat data
structure. The function may dynamically allocate the space
required for the next occurrence during computation.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 27

Regardless of the internals of the function, it must take a
pointer to the current occurrence and return a pointer to the
next occurrence. The sequence must be initialized by the pointer
to the inbuf or outbuf as passed on ram_query() or the O\ltbuf as
passed in ram_nextbuf(). These pointers may be RAM_NULL in order
to initialize the function. The function may have no other
arguments. However, note that this is sufficient for many data
structures, including linked lists, trees, queues, etc. Both.
input and output function pointers may be passed in ram query()
while only output function pointers may be passed in . - ·
ram_ nextbuf () •

As an example of a traversal fun~tion that meets these
requirements, consider the code in Example 3 which traverses a
linked list.

typedef struot
{

char link_data('l'OTAL_FLAT_DATA_STRUCTURE_ALLOCATION];
LINK •next_ptr;

} LIST;
I*
** TRAV LIST -
**
** Linked list traversal function
** that can be passed to ram_query() or ram nextbuf().
*I
LINK •trav_list(current_ptr)

LINK •current_ptr;

{

}

extern LINK *list_head;

if (current_ptr == NULL_PTR)
{

}
else
{

}

return(list_head);

return(current_ptr->next_ptr);

Example 3. Linked List Traversal

Note that the link pointer points not only to the next link,
but also to the beginning of the data buffer portion of the link.
Note also that only the initial pointer need be extern (list head
in the example) and that even this need not be the case if either
the inbuf or outbuf arguments of ram query (} or ram nextbuf () are
consistently used to initialize the list traversal.-

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

The code in Example 3 is easily converted to an allocation
function as follows:

I*
** ALLOC LIST -
**
** Linked list allocation function
** that can be passed to ram_query{) or ram_nextbuf{).
** Alloc_list() allocates each link of the list as it
** goes.
*I

LINK •alloc_list(current_ptr)

LINK •current_ptr;

{
extern LINK *list_head;

if (current_ptr = NULL_P'l'R)
{

}
else
{

list head= (LINK*) malloc(sizeof(LINK));
return(list_head);

28

current_ptr->next_ptr =(LINK*) malloc(sizeof(LINK));
return(current_ptr->next_ptr);

}
}

Example 4. Linked List Allocation

RAM supports additional types of data structures. It is
often useful to eliminate storage redundancy when it is known
that certain fields in a record will have fixed values regardless
of the number of records or rows. In this case, the fixed value
fields may be defined with one call to ram bind() using
RAM_FIXEDIN or RAM_FIXEDOUT for the buftype argument, and the
variable value fields may be defined with a separate call to
ram bind() using RAM IN or RAM OUT as the buftype. The number of
eleients in the locationsfl, lengthsfl, and datatypesrJ array
arguments is the same in each call, since array element number""""
corresponds to the input or output argument number in the DML
command to be executed by ram query().

If a field is not to be bound as a fixed field, the
corresponding element in lengthsrJ and datatypes[] should be zero
when the call is made to ram bind() with bind type RAM FIXEDIN or
RAM FIXEOOUT. Similarly, if-a field is not to be bound as a
variable field, the corresponding element in lengths[] and
datatypesf J should be zero when the call is made to ram bind() with
bind type RAM_IN or RAM_OUT. No field may be bound as both fixed
and: variable. RAM does not, at this time, check to see that
fixed value fields are not also bound as variable value fields.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

--

Relational Access Manager - User•s Guide, V4.1 29

Neither does RAM check to see that the database does not return
multiple values for output fields bound as fixed value. The last
value returned for a fixed field is the value which will be in
the output buffer. On input, only the first set of fixed values
will be used in the execution of the DML command.

one reason for defining fields in a buffer as FIXEDIN is to
use them as primary keys. For example, suppose a DML command
contained a DML statement that caused the update of the salaries
of a list of employees in a given department. The DML command
could be written so that (a) the department was hard-coded or (b)
as a DML command input parameter so that the input buffer had to
repeat the department number once for _each employee in a flat
record containing department number, employee number, and the new
salary. A better approach is to define the department number as
a fixed value input field and the the employee number and new
salary as variable value input fields, with all of them being
input parameters. In this way the department number need not be
artificially repeated in the application program for every
employee, and a single DML command can handle any department.

The bind type (RAM_RECORD, RAM_ARRAY or RAM_DYNAMIC} may
also be set when buff er descriptions have been loaded from the
database with a call to ram loaddefs{) and is made the current
definition with a call to riim_setdef().

One other modification to the handling of data is available.
By calling ram_setinfo() with the token RAM_STACKING, the output
of multiple DML statements will be treated as the-output of a
single DML statement when the DML command is executed by
ram query(). This means that it must be possible to use the same
output buffer definition for each statement. RAM thus supports
more flexible unions than would otherwise be possible in some
DMLs.

It is legal to change the current buffer definition on the
funcptr after a call to ram_query() or ram_nextbuf() returns
RAM_MOREDATA or RAM_MORESTMTS. 'l'his allows the calling
application even more control over the data structures which are
populated or which are propagated to the database DML command.
By manipulating the inrecs and outrecs arguments of ram_query()
and the outrecs argument of ram_nextbuf(), the application can
force a return with the status RAM MORESTMTS prior to completion
of a DML statement which returns data from the database.

:

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 30

2.4.2 Guidelines for Designing RAM Compatible c Structures

Most c structures can be defined in such a way that RAM can
access or populate them directly. The difficulty with structures
is that the compiler may not allocate the members in contiguous
memory. There are rea1ly only two reasons for this.

First, some data types must be word-aligned in order to take
advantage of special move instructions on a particular machine.
Among the candidates are "int", "short", "float", and "double".
By learning which C data types are word aligned on your machine,
you can insure that these members are.contiguous by placing them
as the first members in the structure definition.

Second, variable length members are frequently given no more
than a pointer allocation. Thus, a pointer to char or a pointer
to another structure, although it will be word-aligned, will
point to a memory location which is inaccessible to RAM. This is
because their address can not be consistently represented as the
result of adding a fixed value offset to the address of the
beginning of the structure.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

struct
{

int a;
char *b;

} example_5;

Example 5: Non-flat Data Structure

31

Example 5 contains a pointer to b. RAM can access ~
pointer bas the address of the example 5 struct + sizeof(a), but
the contents of ~ can be anywhere in m~mory and are unknown to
RAM. On the other hand, if the maximum allocation needed for b
is known in advance, then the definition in Example 6

struct
{

int a;
char b[MAX_B]1

} example_6;

Example 6: "Equivalent" Flat Data Structure

makes the contents of b accessible to RAM as the address of
example_6 + sizeof(a).

Several rules should be followed in designing "flat"
structures:

l. Place all structure members which are of native word length
first. For example, "int" data types are quaranteed to be
word-aligned.

2. Make certain that any structure members that RAM must access
are word-aligned and allocated when the structure is
allocated. (Pad the structure, if necessary.)

3. Make certain that the size of an array of char is a multiple
of the number of bytes in a word.

4. Place all pointers as the last members of the structure, if
possible.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user's Guide, V4.1

2.5 Design Considerations for DML Commands: For DML Programmers

2.5.1 Writin9 and Testing Commands

Writing DML commands for execution by RAM requires a
detailed understanding not only of the vendor supplied DML, but
also of the database schema designed to support the application.
Any the DML statements should be tested using the vendor
supplied interactive DML utility prior to use in RAM: SQL*Plus
(ORACLE), IDL or SQL (Britton Lee), SQL or QUEL (RTI), or
Transact*SQL (Sybase).

32

DML commands processed by RAM may contain virtually any
number of DML statements. However, it is 9ood practice to treat
a DML command as a transaction or minimally interruptable unit of
work. Once a DML command begins processin9, the ideal process
would let it complete without interruption. Realistically, the
handling of data buffers may require some interruption.
Nonetheless, the DML programmer should strive to encapsulate
database transactions within the boundaries of a single DML
command.

RAM provides support for DML commands which contain multiple
selects or retrieves. The select lists may differ significantly
and therefore require different buffer definitions. The wise DML
prograJ1U11er will keep this in mind as multiple selects or
retrieves may imply additional procedural code within the
application. Every exit from a DML provides an opportunity for
the application programmer to interrupt the unit of work, holding
database locks, and thereby reducing concurrent throughput.

It is important that the DML command designer remember that
the statements are intended to be used in a production
application. Qualify statements in such a manner that they will
fail to affect or return rows 9racefully. RAM provides a number
of sophisticated ways to detect exception conditions and allows
the application to recover based on the processing of such
exceptions.

Wherever possible use the DML to enforce database inte9rity
constraints on behalf of the application. Neither encoura9e nor
depend on the application to enforce database integrity:
integrity constraints are almost always schema-bound. Do not
depend on the application to qualify data values before sending
them to the database if there are qualifiers on the domain of the

. column (such as allowed ranges of values). Even though the
· application programmer should qualify the data from the point-of­
view of the application, the DML programmer should perform this
function rather than allow a loss of data integrity.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User•s Guide, V4.l 33

Note that the symbol used to introduce a parameter in a
DML command is vendor dependent. For example, Britton Lee supports
true stored commands and uses the symbol 1 $ 1 to introduce a
parameter. For substitution parameters in parsed DML statements
however, they use the symbol 1 %1 • Oracle, on the other hand,
uses the symbols•&• and•:•, respectively.

If the database vendor does not support DML commands, it
is necessary to run the RAM utility "ram compile". This utility
takes a single command line parameter as-input, the name of an
ASCII file containing the DML command definition (a set of DML
statements with properly introduced parameters). The name of the
file will become the name by which th~ DML command is invoked
within RAM via a call to ram_query{).

• Multiple Retrieval or Select Statements - If more than one
retrieve or select statement is used in a DML command, the
calling program may not be able to distinguish the data
associated with each statement. See the set option
"STACKING" under ram_setinfo ().

* Parameter Names in DML Commands or DML Statements - The user
may use his/her own parameter names in a DML command or
statement, or, a default naming convention can be used,
making it unnecessary for the application to pass {and
maintain) the parameter names in the call to ram bind(). In
this convention the first parameter name must be-an ordinal
ASCII number specified in the column order corresponding to
the DML select or retrieve. Each additional parameter name
should be increased by one (e.g. 001,002 ••• 999). The
specifics are somewhat vendor dependent {see Part IV). We
strongly recommend that the DML programmer consistently use
the default parameter names.

2.5.2 DML Commands as Functions

This section is intended to provide some understanding of
DML commands by analogy with c functions and the methods of
object-oriented programming. This is not intended to explain
object-oriented programming technically, but rather to draw upon
two of the motivations behind the techniques: methodical
construction of abstract data types and encapsulation of data.

First, some basics. A(n abstract) data type may be defined
in terms of how data of the given type is manipulated. Thus,
defining all the functions that manipulate a given data type
serve to define that data type. Alternatively, the exhaustive
list (however long) of all possible functions that can manipulate
a given data type is sufficient to define the data type. An
abstract data type is nothing more than a way of representing a
kind of object or idea, whether abstract or concrete. When a
function is used in this way, its input and output arguments and
any internal or intrinsic data are a part of the functions

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

definition. They are implied by the function. If the intrinsic
data of a function lasts beyond the life of a program, the data
is said to be persistent. Relational databases are an excellent
way in which to manage the persistent data associated with an
object. Indeed, a relational database may be understood as a
collection of facts about entities or objects and relationships
between those objects (the entity-relationship model).

With these concepts in mind, one can see that one way to
understand a collectio~ of DML statements which are processed as
a unit of work is a a function which manipulates an entity or
object in the database. This is closely related to the object­
oriented approach to programming.

Object-oriented programming requires the use of calls to
objects (technically called "messaging the object" if the
environment provides a "messenger" function and typically via
function pointers otherwise). Each of the functions associated
with the object (called methods and normally accessible only via
the object) determines how to interpret the message (i.e. the
argument list of the function) that is sent to the object. As a
result, functions are specific to a class (i.e. a collection
having some properties in common) of objects (i.e. abstract data
types). A particular message results in the execution of one of
the functions "owned" by the object class. A message contains
not only the token which will result in the execution of a
particular function, but also contains any (references to) data
external to the object owning the function.

Object-oriented databases must supply means for defining
classes of objects and the functions which manipulate them.
Stonebraker (the designer of Ingres) has proposed that allowing
QUEL to be embedded in an column and executed by reference
provides the necessary extensions to a relational database such
as Ingres, resulting in "object-oriented" functionality. The
following points are relevant.

34

First, recall that objects and their functions are mutually
defining, given that objects have a hierarchy (of classes) and
that functions operate on objects. Thus, one can define an
object class by defining the functions that it uses. The
functions are defined as operating on the objects intrinsic data.

• Second, it is equally important to understand that invoking
a function owned by an object implicitly •sends a message'to that
object". strictly speaking, an object-oriented programming
environment would not allow direct invocation of a method, but we
are more interested in understanding the concepts in a more
conventional environment.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 35

Third, some means of creating and modifying classes and sub­
classes of objects is required. This can not be done
arbitrarily. In fact, the requirements are remarkably similar to
the traditional relational database design requirements for
normalization. This is not surprising since the objects in
object oriented programming are necessarily sets and relational
database theory is based upon set theory.

Fourth, and what is required to complete the picture, is
some means of restricting the manipulation of the data belonging
to sub-classes of objects and that this is usually called
encapsulation of data. (Encapsulation of functions must
unfortunately be enforced by convention in the relational
database environment.) This is done in such a manner that only
the functions defined as belonging to the class can access the
underlying objects or sub-classes. This involves the ability to
deny read or write access to the data of the underlying classes
of objects and the ability to control execution permission of the
objects functions.

The essential aspects of the requirements for an object­
oriented database can be obtained using the DMLs provided by most
database vendor with the associated data dictionary, permissions
database, and the ability to define DML commands.

The objects which are to be manipulated in the database by
the user or application are user views of the database. These
could frequently be implemented as views were it ~ot for the
severe restrictions on the updating of views (which are enforced
by most vendors at this time). There is an alternative that is
more flexible.

First, one must identify the objects or user views required
along with their relationships. These relationships are just set
inclusion as demonstrated by one-to-many relationships between
primary keys and implemented in a normalized database by
association relations. The assumptions is that the user view
exists as some hierarchy of sets.

Second, the functions which are to be used to manipulate
these objects are defined using DML commands. Remembering
point one above, these functions serve to define the object
class. Any parameters must be one of three types: (1) it serves
to select a sub-class, (2) it serves to select a class
instantiation (single instance), or (3) ·it serves as a true
function argument, uniquely referencing~ome object which the
function must operate on and which is outside the class owning
the function. This last use of parameters must be carefully used
if the class hierarchy of objects is not to be destroyed. Of
course, proper database design can help since it becomes
impossible to reference objects for which a relationship is not
defined {via keys) •

•

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

It is important to note that multi-statement DML commands
always represent abstractions. The abstraction may represent
either functional abstraction or data abstraction. For example,
in functional abstraction a single DML command can perform an
update followed by a delete from a distinct relation,. the two
statements being connected only by the user view of the
"transaction". In data abstraction, the DML command uses
multiple DML statements to encapsulate the references to
underlying relations and attributes, the associative relations
being completely hidden from the view of the user.

36

Read and write permission may be completely denied on the
underlying relations and, in some vendor databases, DML command
execution permission may be selectively granted. This serves to
further encapsulate the objects. Finally, the ability to define
a sequence of DML commands as a stored program would give another
level to the hierarchy of objects. It is unfortunate though not
catastrophic that DML commands can not reference other DML
commands and that views are not generally updatable, as this
would make the process of using the relational database as an
object-oriented database easier.

If the DML programmer uses a consistent nomenclature, DML
commands can be identified with a particular class of object by
their name. The first part of the name should refer to the ·
class of object and the second portion along with the parameter
list to the particular function or message. Since DML commands
are invoked by name, changes to the functions and therefore to
the object definition are propagated throughout the.application
system automatically.

This scheme only works given adequate database design,
control over data access, control over DML command creation
and maintenance, and relational access manager routines that are
not particularly sensitive to the number of parameters in the
message.

RAM provides a means of implementing this scheme in various
relational database environments. For example, even though
neither Oracle nor RTI support DML commands or procedures, RAM
provides a means of storing a sequence of DML statements in the
vendor database, invoking the script by name, and passing
parameters to the stored script.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

2.5.3 Some Beneficial Uses of RAM

The benefits of the RAM approach may be summarized as
follows:

1. The application can handle different DMLs by changing
one argument in the ram_init().

2. The amount of code required for the functionality
achieved is minimal.

3. Changing the amount of data to be written or read is a
simple as allocating space ~nd changing a argument
(numrecs or bufsize).

4. Changing functionality is accomplished by:

a. changing the DML referenced by cmdbuf, and
b. changing the input and output buffer structure

definitions

5. The DML command ram query() processes is totally
transparent to the application whether an insert
multiple times, multiple inserts one time, or even
deletes, updates, selects and appends interspersed.

6. Changes to DML commands or buffer definitions can be
accomplished in many cases without recompiling or
relinking the application. - ··- · ·

7. Conversion between relational database tables and
procedural application data structures is simple.

37

a. Conversion between vendor relational databases can be
as easy as converting the DML statements and relinking
with the version of RAM which supports the new vendor.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 38

2.6 Guidelines for Migrating an Existing Environment to RAM

In the core produot, RAM routines contain the minimal
intelligence required for performing application level
transaction management (as compared to database transaction
management). However, the extended product adds this
functionality in a transparent fashion, so that these features
can be made available to the application at a later time. for
example, the addition of enforced table locking and record
locking as well as "browse and update" transaction control can be
added to an application at a later time.

Integration of these routines in a new environment should
follow a migration path which has the following elements:

1. Use of these routines in any new applications.

2. General use of these routines where possible in
existing applications.

3. Additions to the library where the existing routines
prove insufficient for the needs of the application.

4. Embellishment of the existing routines to provide
additional intelligence based on specific customer
requests.

5. Use of the extended product routines.

6. In general, the new customer should discourage the
practice among applications developers of writing and
embedding in applications any database code which is
specific to the application including

a. error handling code,
b. transaction management code,
c. query buffer (and DML) manipulation,
d. hard or soft deadlock deteotion and management, or
e. retrieval results management.

AT CONFIDENTiAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 39

2.7 A Simplified Illustration of the Routines

TYPICAL APPLICATION SKELETON

Regardless of the complexity of the DML to be performed by a
call to ram_query(} and regardless of the nature of the database
schema, the following code is sufficient.

#include "ram_tokens.h"

#define LOAD_FROM_DATABASE

callinq_prog (}

TRUE

{

return code= ram_init(••••) /* initialize *I

/* Load buffer definitions from database */
if (LOAD FROM DATABASE)
{ - -

}

return code
return-code
return-code
return-code

=ram loaddefs(••••); /*load buffer definition*
= ram-loaddefs(••••): /*load command definitions
= ram-setdef(••••); /*set-input buffer definitio
= ram-setdef(••••): /*set output buffer definiti

/* Alternatively, create them in-line */
else

}

{
return code= ram bind(••••);
return-code= ram_bind(••••);

} -
/* bind input variables */

/* bind output variables */

do
{

/* perform query while RAM_MORESTMTS */

return_code = ram_query(••••); /* execute query */

/* get data while RAM MOREDATA */
while (return code ==-RAM MOREDATA) - -{

return code= ram nextbuf(••••); /* 9et111ore data*/
} /* end moredata loop */ · · ·

} while (return_code == RAM_MORESTMTS); /*end query loop*/

return_code = ram_close(••••); /* close up database channels */

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

..

Relational Access Manager - User's Guide, V4.l 40

2.s A Complete RAM Program in c

/**
** This program illustrates the use of the FOLL versions
** of the RAM.
**
** It executes the following DML command entitled ret_pres
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

select name, beg_year from presidents p
where p.beg_year >= &l
order by p.beg_year

presidents is a relation containing the name of each
president, and the beginning year of his term(s)

name is a character string
beg_year is an integer specifying the beginning year of

the presidents term

This program will:
query the user for a beginning year
query the data base for those presidents

and terms beginning with the year specified
by the user.

print to the terminal the name and year

**

*/

#include "ram_tokens.h"

main()
{

int i;
int app id;

/ / Input variable
int in_beg_year; /* The beginning year of the term,

to be used as argument
to the DML command

'

/* output variables */
struot {
char ret name[10][25];

int ret_beg_year[lO];

} out buf;

*I

/~ end output variables */

/* president's name returned from
database upon execution of
DML command.

*I
/* beginning year returned from

database upon execution of
DML command.

•1

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - user's Guide, V4.l 41

/*

I*

I*

/*

int channel num = O;
int return_code;

/* database channel to use */
/* return code, from function calls */

for ram init */
char logical_devnames[] [RAM_MAXDEVNAME] = {nidbO:"};
char dbnames[RAM_MAX_CHANNELS] [RAM_MAXDBNAME] = {"pd.ms"};
int query_languaqe = RAM_IDL; /* OML to use */

for
int
int
int
int
int
int

for
int
int
int
int

int

int

ram_bind - bindinq input variables */
in recs = 1;
in bufsize = sizeof(in_beq_year);
in numvars = 1; /*number of variables */
in-locations[] = {&in beg_year}; /* addresses */
in lenqths[) = {sizeof(in_beg_year)}; /*lengths*/
in_datatypes[] = {iINT4}r /* data types (token) */

ram bind - bindinq output variables */
out-recs;
out-bufsize = sizeof(out buf);
out-numvars = 2; /*number of variables_*/
out-locations[] = {&out_buf.ret_name,

&out_buf.ret_beg_year};/* addresses */
out lengths[]= {sizeof(out buf.ret name[O]),

sizeof(out buf.ret beq_year[O])); /*lengths
out datatypes[) = {!STRING,

iINT4}; /*data types */

for ram query */
char db_request[50); /*name of OML command*/
int request_type = RAM_CMD; /* the database request is a

FUNCPTR infunc();
FUNCPTR outfunc();

Stored Command (not an embedded Query)
*I

/* Initialize the database */
numchans = 1;
return code = ram init - (-

&app id,
numclians, /* open one channel (channel O) */
&logical devnames, /* logical device names */
&dbnames; /* data base names */
query_language /* OML */
) :

if (return_code == RAM_SUCCESS)
{

channel_num = o;
}
else
{

/* we asked for 1 channel, i.e. o *I

printf(nProhlems with ram_initn);
exit(O);

}

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 42

I*

/*

'

bind the input variables */
return code = ram bind - (-

&app id,
channel num,
&in locations,
&in-lenqths,
&in datatypes,
in iiumvars,
RAM ADDRESS,
RAM-Ilil,
RAM-RECORD
RAM-PNULL,
); -

bind the output variables */
return code = ram bind - (-

&app id,
channel num,
&out locations,
&out lengths,
&out datatypes,
out numvars,
RAM-ADDRESS,
RAM OUT,
RAM-ARRAY
RAM-PNULL,
) ; -

/* channel number */
/* location of variables */
/* lenqt.hs of variables */
/* datatypes of variables */
/* number of input variables */
/* locations are addresses */
/* variable are for input */

/* record format (not array) */
/* default arg names */

/* channel number */
/* location of variables */
/* lengths of variables */
/* datatypes of variables */
/* number of output variables
/* locations are addresses */

/* variables are for output */
/* array format (not record) */

/* no args */ · ·

/* get the Stored Command from the user */
printf("Which Stored Command should we execute:");
scanf("%s 11 ,&db request);

/* Get Beginning Year from User */
printf(11Enter the beginning year: 11);

scanf("%d11 ,&in_beg_year);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 43

/*

}

outer loop - execute DML colllllland */
do
{

out recs = RAM FILL BUF;
return code = ram query

-(-
/* fill the output buffer */

&app_id,
channel num,
request-type,
&db request,
&in-beg_year,
&in-bufsize,
&in-recs,
&out buf,
&out-bufsize,
&out-recs,
infunc,
outfunc
) ;

/* channel num */
/* execute-DML command */
/* location of DML command name */
/* address of input buf */
/* size of input buf */
/*.number of input records*/
/* address of output buf */
/* size of output buf */
/* number of records to retrieve */

/* display output from query */
for (i=O; i < out_recs; i++)
{

}

printf("%d \t %s \n",
out_buf.ret_beg_year[i],
out_buf.ret_name[i]);

/* inner loop - fetch data until done */
while {return_code == RAM_MOREDATA)
{

}

out recs = RAM FILL BUF;
return code = ram nextbuf - (-

&app_id,
channel num,
&out recs,
&out-buf,
&out-bufsize,
outf\inc
) ;

/* display output from nextbuf */
for {i=O; i < out recs; i++)
{ -

}

printf("%d \t %s \n",
out_buf.ret_beg_year[i],
out_buf.ret_name[i]);

} while (return code== RAM MORESTMTS); /*end outer loop*/
return_code = riim_close(&app_id, channel_num); /*close database*

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 44

PART XII

REFERENCE MANUAL

3.0 The Routines

This section contains full descriptions of the RAM .
routines. These routines allow for input and retrieval of large
blocks of data. They will navigate through user specified input
buffers for arguments to DML commands and statements as well as
update user specified output buffers with data retrieved from the
database.

As always, single
is to be discouraged.
the RAM

record processing in a relational database
However, this is entirely possible with

The routines to be supplied in the current release include
the following:

ram init()
ram-bind()
ram-query()
ram-nextbuf ()
ram-close()
ram-setexc()
ram -getinfo ()
ram-setinfo ()
ram -getobj ()
ram -setobj ()
ram-loaddefs{)
ram setdef {)

The Extended Product contains additional special functions
and utilities.

3.l The constants File

All calling programs should include the file ram_tokens.h as
follows:

#include "ram_tokens.h"

calling_prog ()
{

}

This file contains the necessary tokens and values to
properly call the database routines. This file is database
vendor specific.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 45

3.2 Initialization File

The "init.ram" host file contains default environment
variable values for the environement variables explained below.
It is read once when ram init() is first called. The file may be
edited with any standar~editor as its contains only ASCII data.
Each line must be terminated with a carriage return. Only one
variable is allowed per line.

RAM MIN CHANNELS 0
- RAM MIN CHANNELS is the minimum number of channels that an

application may open. If a call to ram_init{) does not provide a
legitimate value for num channels, RAM_MIN_CHANNELS will be
opened. Unless at least one channel is opened, no work may be
done on the database.

RAM MAX CHANNELS 1
- RAM_MAX_CHANNELS is the maximum number of channels that an

application may open. If ram init() is called implicitly,
RAM MAX CHANNELS are opened. -Limits may be imposed by the
database vendor as well.

RAM DEVNAME ""
- RAM DEVNAME is the default location of the database. This

may be a-remote database (the string which follows 11 @11 in an
ORACLE CONNECT) or a Sharebase Britton Lee communications device
logical device name. This value will be used if the call to
ram init() fails to pass a legitimate value or if ram init() is
called implicitly. -

RAM DBNAME ""
- RAM_DBNAME is the default database instance to be opened.

In Sharebase Britton Lee it is the name of the database. This
value will be used if the call to ram init() fails to pass a
legitimate value or if ram_init() is called implicitly.

RAM DML "SQL"
RAM DML is the name of the DML used in all DML commands

processed by the application. This value will be used if the call to
ram_init() fails to pass a legitimate value or if ram_init() is
called implicitly. Possible values are SQL, QUEL, and IDL
depending on the DMLs which the vendor supports.

NOTE: ADDITIONAL ENVIRONMENT VARIABLES WILL BE ADDED TO THE
DOCUMENT.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 46

3.2 ram_init

3.2.1 Invocation and Argument Declarations

RETCODE ram_init(&app_id, num_channels, logical_devices, dbnames,
· query_lanquage)

long int app id;
long int num-channels;
char logical-devices[][];
char dbnames[](];
RAM_TOKEN dml;

SYNOPSIS:

/* A unique application identifier */
/* Number of channels to init */
/* Ptr to Array of symbolic device names
/* Ptr to Array of database names
/* DML to use by default. */

This routine is called once at the beginning of the
application code. It takes care of initializing the RAM data
structures for the invoking application, login to the database,
and database communications initialization as necessary.
Regardless of the means by which the vendor database normally
differentiates between cursors, runtime control blocks, and
channels, the code does so in a uniform manner via channel
number. The logical=device is used to establish where the
database corresponding to a given database name resides.

The function ram init() provides a means for a single
application to access-multiple databases uniformly. A data
structure specific to the application is created by this routine
and is then accessed by all other routines in the RAM library.
Once created, the APP structure must be passed to the RAM in
subsequent calls via the app id argument.

If the application fails to call ram init(), ram init(} will
be called on the first subsequent invocation of a RAM-routine.
However, because this will cause the routine to use all the
default values, unnecessary memory usage will occur and
restricted (control of) access based on system determined values
of the database name, the logical device, the DML name, and the
number of channels to open will apply.

3.2.2 Input Arguments

1. Number of channels to open - A four byte integer value
representing the number of communication paths to the
database. The pµm qbannels argument is used to tell the RAM
the total number of channels to the databases that should be
initialized. Channels will be opened sequentially starting
with channel o. The maximum number of channels allowable is
specified by the environment value RAM MAX CHANNELS. Note

' that these are not necessarily channels in-the operating
system sense.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

This argument defaults to the environment value of
RAM_MAXCHANNELS.

47

2. Logical device name for each channel - The logicalwdevices
argument is an array of num channels null-terminated
strings, each allocated as RAM_MAXDEVNAME in length, and
giving the name of the logical device {disk or
communications device) on which the corresponding database
specified in the dbnames argument resides. This argument
defaults to the environment value of RAM DEVNAME. If the
user fails to i:;pecify a given string array element, the last
array element specified is used. All strings must be a
allocatd to a length of RAM MAXDEVNAME {defined in
ram tokens.h). These may be disk drive names or
communications channels such as an Ethernet driver supported
by the database vendor. see your Database Administrator for
the appropriate names.

3. Database name for each channel - The dbnames argument is an
array of num channels null-terminated strings containing
database names, each RAM_MAXDBNAME in length. All strings
must be a fixed length of RAM MAXDBNAME (defined in
ram tokens.h). This argument-defaults to the environment
value of RAM_DBNAME. If the user fails to specify a given
string array element, the last array element specified is
used.

4. DML to be used - Depending on the vendor database the values
may be RAM SQL, RAM QUEL, or RAM IDL as defined in the file
RAM tokens:h. This-argument defaults to the environment
value of RAM DML. The s!m! argument is a RAM TOKEN for the
DML or query-language to be used in communicating with the
database.

3.2.3 output

1. application identification - the app id argument will
contain a long integer value on return. The program must
not alter this field during the run of the program. It is
the programmers responsibility to pass this field in each
subsequent RAM call.

2. The function returns a status token specifying either:

RAM SUCCESS - initialization has gone without a hitch
RAM FAILURE - unable to effect an initialization

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 48

3.2.4 How to call ram_init

#include "ram tokens.h"
calling_prog()
{

}

int
int
char

char

return_code; /* return code for RAM calls */
num chans; /* number of channels to init */
log=devs[RAM_MAX_CHANNELS] [RAM_MAXDEVNAME)

= {"idbO:"};/* logical
** device
** names
*/

dbnames[RAM MAX DATABASES] [RAM MAXDBNAME]
- - = {"ajax_db"};/* data base

** names
*/

RAM TOKEN dml; /*
** DML token -
** **

RAM IDL, RAM SQL, or
RAM=QUEL -

*I

num_chans = l; /* just open one channel
dm1 = RAM SQL; /* queries will be in SQL
return_code = ram init(

- &app_id,
num chans,
log_devs,
dbnames,
dml
) i

if (return code != RAM_SUCCESS)
{ -

(chan O) */
*/

printf("We have Initialization problems.\n");
}

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

3.3 ram_close

3.3.1 Invocation and Argument Declarations
RETCODE ram_close(&app_id, channel_num)

long int app id;
long int channel num;

3.3.2 Synopsis

This routine is used to close all (if the token

49

RAM CLOSEALL is passed as the argument channel num) or one open
channel (if a specific channel number is passed in the parameter
channel num). It should be called only when the channel is no longer
required or at the end of the program. If the channel parameter
is negative, all open channels are closed starting with the
highest channel number and decrementing. Since dependent
channels are given high numbers, this insures that all dependent
channels will be closed before the parent channel. Closing one
channel assumes that the caller has already closed any dependents
and that the caller will not attempt to use that channel again
(they will get an error). When the last channel is closed, the
APP data structure is automatically deallocated.

If an error is encountered on closing, it is assumed that
there is activity pending on the channel and that the caller
really does intend to close; a cancel is issued and the close
retried. If the close still fails, this routine returns with the
status code. The channel number which failed or the number of
channels remaining open unless specific channels were closed out
of sequence can be obtained by calling the routine ram getinfo().

By default, this routine is called on exit from the
application with the channel num parameter set to RAM_CLOSEALL.

3.3.3 Input Arguments

1. Channel Number to close (or close all channels) - A four
byte integer value specifying the channel to close. The
token RAM_CLOSEALL closes all channels currently open. If
it is not called explicitly by the application, it is called
implicitly with the argument RAM CLOSEALL when the
application exits. -

3.3.3 Output

The output returns a status token specifying either:

RAM SUCCESS - closing has gone without a hitch
' RAM::FAILURE - unable to effect a close

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

3.3.4 How to call ram_close

#include "ram tokens.h"
calling_prog (f
{

50

int
int

return code;
chan_n\iin;

/* return code for dbac calls */
/* number of channel to close */

return code= ram close(&app id, chan num);
if (return code !~ RAM SUCCESS) -- -

{
printf("We have Closing Db problems.\n");

}
}

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

3.4. Ram_bind()

3.4.1 Invocation and Argument Declarations

ram_bind(&app id, channel num, locations, lengths, datatypes,
num_vars, loc_flag, buftyp, bind_type, paramnames)

long int
long int

app id;
channel_num;

/* A unique application identifier
/* number of channel to be
associated with these binds

*I

*/

51

long int locations[][];/* pointer or offset description of buffer
long int lengths[][]; /* *I
long int datatypes[][];/* tokens for datatypes of prog variables*/

num vars; /* number of prog variables to be bound
loc-flag; /* determines if LOCATIONS represents addresses

- or off sets

long int
long int

RAM_TOKEN buftyp; /* token for which buffer to use -

RAM TOKEN bind type;
char paramnames[][];

'

*/
I* RAM ARRAY I RAM RECORD,

/* input parameter names
etc. */
*/

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 52

3.4.2 SYNOPSIS:

This function is used to define a program data structure.
The data structure variables may be bound by addresses or offsets
within the address space of the data structure. This allows a
contiguous address space to be associated with database
variables. The routine actually associates the program variable
address to the internal database buffer {for Fortran programmers,
this works like a "dynamic Fortran EQUIVALENCE declaration") so
that no unnecessary copying or moving need be done. It also sets
up data type conversion as required.

This module passes descriptions of the input or output
buffer structures and makes them the active or current buffer
definition. It is called for input variables when a DML command
or statement requires parameters in order to identify the program
variables that will hold these parameters. Likewise, it is
called to define an output buff er structure {when the DML command
contains a query which returns data) in order to identify the
program variables that will hold the data returned from the
database. If there are neither input or output variables to be
bound, it is not necessary to call this function. Note that the
arrays locations, lengths, and datatypes are parallel arrays each
having numvars elements. Thus element O in each refers to the
first parameter (on input) or program variable (on output).

It is critical that the ordering of the variables must
follow the sequence expected in the DML command or statement.

3.4.3 Inputs

l. application identification - a unique identifier for the
application invoking RAM.

2. channel to be associated with the binding - a four byte
integer value the channel num argument is the number of the
channel (greater than zero and less than RAM MAX CHANNELS)
on which the subsequent call to ram query() will-be issued
to process the host data structure.- If the selected legal
channel is not open, it will be opened by default in the
call to ram_bind{).

3. locations of the calling program variables - the address of
an array of integers that specify the address or offset into
the buffer of each variable to be bound.

Integer offsets are
given base address.
are set directly if

computed as number of bytes by taking a
The addresses of each of the variables

used.

If the argument loo flag is set to RAM_OFFSET, the locations
argument will be interpreted as offsets. Offsets are
referred to the address of the buffer argument in the
ram query() call. Otherwise the first element is a base

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

address and the remaining elements are interpreted as
addresses. Internally offsets are computed against this
base address for all the elements, with the first element
having an offset of o. Note that negative offsets are
allowed. locations may not be mixed-mode: use either
offsets or addresses. Offsets are the preferred mode.

4. lengths of program variables - the address of an array of
integers that specify the lengths (in bytes) of the host
data structure elements.

53

5. data types of program variables - datatypes is the address
of an array of integers that contain tokens describing the
data type of each host data element. The tokens are defined
and described in ram_tokens.h.

6. buffer type of variables - buftyp is an integer token that
specifies whether the variables to be bound are input
or output.

buftyp may be RAM IN, RAM OUT, RAM FIXIN, or RAM FIXEDOUT.
If the buftyp argiiment is-RAM OUT,-a RAM BUF strlicture is
set up to bind multiple occurrences of the output for
subsequent calls in ram_query(). If the buftyp is
RAM_IN, then an RAM_BUF structure is set up to bind multiple
occurrences of the input for subsequent calls in
ram_ query() •

If RAM_FIXEDIN or RAM_FIXEDOUT is used, the program data
structure is assumed to have a single occurrence. In this
way, the programmer may specify certain values as having a
single occurrence in the host data structure via one call to
ram_bind() and others to have multiple occurrences via
another call to ram_bind(). When ram_query() is called, the
single occurrences (values) will be used repeatedly while
the multiple occurences are "stepped through".

For each structure, data type conversion is handled
automatically during the ram_query() call. The data type
of application data structure elements is specified via the
datatypes argument. Application developers need not be
concerned with the data type within the database, nor with
the use of special symbols to handle special datatypes in
some database systems. In addition, the number of datatypes
which programs can handle via the database has been
augmented to support more data types than some
databases support, such as date or time.

7. format of multiple occurrences - bind type is a token that
spec~fies Whether multiple occurrences Of the data structure
are 1n an array ~RAM_A:RRAY) or record (RAM_RECORD) format,
o~ should be an image of the database table row on output

' (RAM DYNAMIC). The tokens are defined in ram tokens.h. The
default is RAM RECORD. -

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

In the accompanying examples, the memory map of data values
shows field addresses increasing from left to right, then
top to bottom. In Example 1, two three element arrays are
either populated from, or read into, a database via a DML
command: NAME and DATE.

NAME(l) NAME(2) NAME(3)
DATE(l) DATE(2) DATE(3)

Example 1. Array Format

54

In Example 2, three records each consisting of a name field
and a date field are populated from, or read into, a database
DML command.

NAMEl DATEl
NAME2 DATE2
NAME3 DATE3

Example 2. Record Format

The bind type argument may be one of RAM ARRAY, RAM RECORD,
or RAM DYNAMIC. If the bind type argument is RAM_ARRAY,
the data fields are assumed to be in or are output in array
format (also known as column major) as in Example l above.
If the bind type argument is RAM RECORD, the data fields
are assumed to be in or are output in record format (also
known as row major) as in Example 2 above. If RAM DYNAMIC
is used, data will be returned to the program data-space
assuming an image of the database table involved is
appropriate. The datatypes, lengths, and offsets are those
of the database row. RAM_DYNAMIC is valid only for a buftyp
of RAM_OUT.

In writing a macro or stored procedure, or in using
substitution variables, the parameters and output variables
(as from a SELECT) must be named. However, the RAM normally
assumes that they will have names corresponding to their
columnar position on output, and their lexical order on
input. If DML writers follow this convention, the
programmer need not know the database names of database
elements (columns or parameters). Names should be unique to
a script or stored procedure and are ASCII enumerations
(e.g. 11 0001", 0 0002 11 , "0003", etc.). The system designer
may enforce strict naming if so desired however and must
then insure that the paramnames argument is non-NULL and that
each variable corresponds to the proper database element
name. This is not advised.

s. , NUlllber of host data elements - numvars is a four-byte
integer which is the nlll!lber of host data elements in the

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - Userts Guide, V4.1

data structure being defined.

9. location flaq - Optional: the loc flag token specifies
whether locations are offsets or addresses. The tokens,
RAM ADDRESS and RAM OFFSET, are defined in ram tokens.h.
The-default is RAM OFFSET.

55

10. parameter names - Optional: :paramnames is the address of an
array of null terminated strinqs containing the parameter
names used in DML commands or statements. The strings must
be declared a fixed length of RAM PARAMLENGTH. If the default
parameter names (000,001 ••• 999) are desired, use the token
RAM_PNULL. (When binding output variables, parameter names
have no relevance. Use RAM_ PNULL. This is the default.)

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

3.4.3 output

1. The ouput returns a status token specifying either:

RAM SUCCESS- binding has gone without a hitch
RAM-FAILURE- unable to effect a bind

2. Ram bind() may optionally return a valid app id value if
ram_init() has not been called.

AT CONFIDENTIAL - 00 NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

56

Relational Access Manager - User's Guide, V4.l

3.4.4 How to call ram bind

#include "ram tokens.h"
calling_prog()
{

/* defines used by this application */
#define BUF SIZE 100
#define INVARS 10
#define OUTVARS 10
#define CHANNEL NUMBER 0

int return code;
int app_idT

/* allocation for binding */
int app id;
int chanum; /* channel number to be used */
int locs[OUTVARS+INVARS); /*variable director for bind*/
int lens[OUTVARS+INVARS); /*lengths of variables */
int dtypes[OUTVARS+INVARS); /*variable datatypes */

57

char paramnames[)[RAM PARAMLENGTH)=
{"secid","bondid"} /* input parameter names */

int numvars; /* number of variables per rec*/

union {
char inbuf[BUF SIZE);
struct { -

int parml;
int parm2;

} parms;
} in_buf;

/* input buffer *I

/* RAM RECORD format */

union {
char outbuf[BUF SIZE);
struct { -

int parml[20);
} parms;

} out_buf;

/* output buffer

/* RAM ARRAY format

*/

*I

/******** BIND INPUT *********/

'

chanum = CHANNEL_NUMBER;

locs[O] = &in buf .parms.parml;
locs[l] = &in-buf .parms.parm2;

/* assign channel number */

/* address of first variable */
/* address of second variable */

lens[O) = sizeof(in_buf.parms.parml); /* len of first variable*
lens[1] = sizeof(in_buf.parms.parm2); /* 1en of second variable

• dtypes[O] = iINT4;
dtypes[l] = iINT4;

/* (TOKEN)datatype of first variable *
/* (TOKEN)datatype of second variable

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 58

numvars = 2; /* vars per record */

ram bind(
- &app id,

chanum,
locs, /* array of variable locations */
lens, /*array containing lenghts of varialbes*/
dtypes, /*array containing datatype tokens */
numvars, /*number of variables to be bound */
RAM ADDRESS,/*locations specified by actual address */
RAM-IN, /*variables to be bound are for input */
RAM-RECORD, /*variables are in record format */
paramnames /* input parameter names */
) ;

/******** BIND OUTPUT *********/

}

'

chanum = CHANNEL NUMBER;
locs[O] = O; - /* offset into buffer of variable */
lens[O] = sizeof(out buf.parms.parm1); /* len of variable*/
dtypes[O] = iINT4; - /* datatype of variable */
numvars = l; /* number of targets in RETRIEVE or SELEC

ram bind(
- &app_id,

chanum,
locs, /* array of variable locations */
lens, /*array containing lenghts of varialbes*/
dtypes, /*array containing datatype tokens */
numvars, /*number of variables to be bound */
RAM OFFSET,/*locations specified by offset into buf*/
RAM-OUT, /* variables to be bound are for output*/
RAM=ARRAY, /* variables are in array format */
RAM_PNULL /* parameter names (irrelevant for output)
) ;

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

3.5 ram_query

3.5.l Invocation and Argument Declarations

RETCODE ram_query(

long int app id;
int channel num;
RAM TOKEN cmdtype;
BYTE *cmdbuf;
BYTE *inbuf;
int *inbufsize;
int *inrecs;
BYTE *OUtbuf;
int *outbufsize;
int *outrecs;

&app_id, channel_num, cmdtype, cmdbuf, inbuf,
inbufsize, inrecs, &outbuf, outbufsize,
outrecs, &dep_chan, infuncptr, outfuncptr)

/* A unique application identifier */
/* channel num opened by init app */
/* RAM CMD-;- RAM QUERY, etc. */
/* pointer to users command buffer */
/* pointer to users input buffer */
/* input buffer size */
/* number of recs to write */
/* pointer to users output buffer */
/* output buffer size */
/* max. number of recs to read */

int dep chan;
FUNCPTR-infuncptr();

/* dependent channel_num - returned */
/* ptr to a traversal

59

FUNCPTR outfuncptr();
or allocation function for input */

/* ptr to a traversal
or allocation function for output */

3.5.2 SYNOPSIS

This module executes any Command or DML statement and
manages all database user I/O. If the stored command or query
results in data being retrieved, then ram query will return
control to the calling program. The return status informs the
program whether it is necessary to call either ram_query or
ram nextbuf subsequently.

Ram query() executes any type of query buffer in the most
efficient way possible (DML command, substitution variables,
multiple statements etc.). It handles error control
automatically where possible. The ram query() routine does not
require programmer knowledge of the specific database statement
structure (i.e. queries could be loaded from a host file, from
the vendor database, or embedded in code.).

Depending on the token value of the argument cmdtype, cmdbuf
will be interpreted as a string of one or more database
statements (RAM_QUERY), the name of a host file containing a
string of one or more database statements (RAM MACRO), a host
file containing pre-compiled database statements (RAM ATFILE), or
a database-resident stored procedure/DML command (RAM=CMD).

In the event that an error occurs or a reason for returning
to the calling application, the error or exception processing (a
call tq ram_nextbuf() for example) may be handled and ram_query{)
calied again for the case of multiple statement processing.
Ram query() maintains internal status so the caller need not. If

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

a statement will return data, ram query() detects and processes
this.

Ram query() parses either SQL or IDL depending on the
langauge-as set in ram_init{).

60

Ram query() determines how many statements are in the cmdbuf
and keeps track of which ones have been executed.

3.5.2 Input Arguments

1. app id - unique application identifier

2. Channel number - channel num is a four byte integer value
specifying the number of the channel on which to process the
database statements referenced in gmdbuf.

3. Command type - cmdtype is a token specifying whether
ram_query will be executing a query (RAM_QUERY) or a Command
(RAM_CMD, RAM_ATFILE, or RAM_MACRO).

If the gmdtype is RAM QUERY and substitution parameters have
been set by a call to-ram bind(), ram_query() performs
parameter substitution using the current values of the
program variables.

Similarly, if the cmdtype is RAM_CMD and DML command
parameters have been set by a call to ram_bind(),
ram_query() performs parameter substitution using the
current values in program variables.

If the cmdtype argument is RAM MACRO, then a RAM BUF
structure is set up to bind input via script procedure
parameters for subsequent calls to ram_query(). This
assumes that the procedure is stored in a sequential ASCII
file on the host, containing executable statements in the
database language.

If the cmdtype argument is RAM ATFILE, then a RAM BUF
structure is set up to bind input via pre-compiled procedure
parameters for subsequent calls to ram_query(). This
assumes that the procedure is stored in a sequential file on
the host, containing compiled executable database language
statements. This buftyp is not portable, since it can not
as yet be supported for all database systems.

4. Command buffer - cmd buf is the address of the user's
command buffer which contains either the name of the DML
command or the text of the DML to be executed.

5. Input buffer - inbµf is the base address of the user's input
, b~ffer containing any input data as described.in ram bind()

with a buftyp Of RAM_IN or RAM_FIXEDIN. -

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 61

6. Input buffer size - inbufsiz is the address of a
integer containing the size of the input buffer.
for error checking.

four byte
It is used

7. Number of input records - inrecs is the address of a four
byte integer which contains the number of input records in
the input buffer. This, in effect, determines the number of
times the DML statement or DML command is executed.

s. Output buffer - outbuf is the base address of the user's
output buffer. If Cll!dbuf contains a query or a DML command
expected to return data, this is the address of the buffer
into which the data is to be placed as bound by a call to
ram_bind() with a buftYP of RAM_OUT.

9. Output buffer size - outbufsiz is the address of a four byte
integer containing the size of the output buffer. It is
used for error checking.

10. Number of output records - outrecs is the address of a four
byte integer containing the desired number of occurrences to
be retrieved per call. The token RAM_FILL_BUF (do not pass
explicitly in the argument list), defined in ram tokens.h,
will cause an attempt to fill the output buffer.-Upon return
this argument will contain the actual number of occurrences
in the buffer. If RAM IGNORE or zero outrecs are
requested, the database-buffer will be flushed and any
further output of the DML statement disregarded.

Note that it is possible that a query will fail to return
any records so that the buffer may be empty on return
from ram_query() or ram_nextbuf().

11. Dependent channel number - If dep chan is set to
RAM DEPENDENT, ram query() opens a dependent channel to
ghannel and processes cmdbµf. Commands are processed on the
dependent channel as though they could not possibly
interfere with statements issued against the parent channel.
The dependent channel is automatically closed by default
when the parent channel is closed (i.e. when processing must
be finished on the dependent channel). On return, this
field will contain the number of the dependent channel. 1:f
set to RAM_CHANNULL, channel is used to process the
query. If set to a positive number which is a dependent
channel, ram_query() processes cl!!dbuf on the existing
dependent channel. If the channel number is not a dependent
channel ram_query() returns an error.

12. input function pointer - Optional: infuncptr is a pointer to
a function which takes RAM NULLl'TR as an initial argument
and returns a pointer to a-data structure instance as
described by the call to ram bind(). The function must be

' recursive but may either dynamically allocate the structure
or may traverse a previously allocated structure.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 62

The form of a traversal or allocation function is:

or
next_ptr =traversal(current_ptr);

next_ptr =allocate(current_ptr);

where current ptr is RAM NULLPTR, inbuf, or outbuf to start
and RAM NULLPTR is returned as next ptr when the traversal
of the data structure is complete. -Next Dtr is the base
address for the buffer to hold (or holding) the next
occurrence.

13. output function pointer - Optional: outfuncptr is a pointer
to a traversal or allocation function for processing output
data.

3.5.3 Output

The output returns a status token specify one of the following:

* RAM NORM - successful completion of the call
* RAM-FAILURE - unexpected catastrophe
* RAM-MORESTMTS- there are more statements to execute. Call

ram-query yet again.
* RAM-MOREDATA- more data is pending from the database.

call ram nextbuf to fetch this data.

In addition to the status, ram query has the potential of
updating user's output buffer,-and number of outrecs as described
above.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

3.5.4 How to call ram_query

#include "ram_tokens.h"

calling_prog ()
{

/* defines used by this application */
#define BUF SIZE 100
#define INVARs 10
#define OUTVARS 10
#define CHANNEL_NUMBER 0

int
char
int
int
int
int
int
int

return code;
•cmdbuf = "ex_ample";
depchan = o;
inbufsize;
outbufsize;
inrecs;
outrecs;
chanum;

union {
char inbuf(BUF SIZE);
struct { -

union {

int parml;
int parm2;

} parms;
} in_buf;

char outbuf(BUF SIZE];
struct { -

int parm1(20];
} parms;

} out_buf;

/******* CALL QUERY **********/
I*
** DML command - ex ample
** range of e is-example
** retrieve (e.id)

I*
I*
I*
/*
I*
I*
/*

DML command name */
dependent channel */
size of input buf */
size of output buf */
number of input recs */
number of output recs*/
channel number */

/* input buffer */

/* status */
/* salary */

/* output buffer */

/* id array */

** where e.status = $000 and e.salary > $001
*I

chanum = CHANNEL NUMBER;
inbufsize = BUF SIZE;
inrecs = 1; -

/* status */
/* salary *I

63

in buf.parms.parml = 15;
in-buf.parms.parm2 = 20000;
outbufsize = BUF SIZE;
outrecs = RAM_FILL_BUF; /*token specifying to fill buf*/

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

return code

}

= ram query(
&app_id,
chanum,
RAM CMD, /* execute a DML command */
cmdbuf,
&in buf,
&inbufsize,
&inrecs,
&out_buf, /* e.id will be placed here */
&outbufsize,
&outrecs,
depchan, infunc, outfunc);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

64

Relational Access Manager - user's Guide, V4.l 65

3.6 ram_nextbuf

3.6.l Invocation and Argument Declarations

RETCODE ram nextbuf(&app id, chan num, quantity, outbuf,
- outbufsize, infunc, outfunc}

long int app id;
int chan num;
int •quantity;
BYTE *outbuf;

/* A unique application
/* channel number to use - must opened

/* number of rows to fetch */

identifier
by init app

int *outbufsize;
FUNCPTR infunc(};
FUNCPTR outfunc();

3.6.2 SYNOPSIS:

This module works in conjunction with ram query when data is
to be returned to the user. It enables the user to manage the
flow of output from the database.

Ram nextbuf() is used to perform a general fetch loop which
loads rows of data into the output buffer. If the caller
requests g;µantity RAM IGNORE, the channel is flushed. Any number
of rows can be handled. The ram bind() call on the RAM OUT
buff er sets up the structure needed by this routine to bind data
to program variables. Calls to ram nextbuf() and ram query() may
be interspersed based on the return-values RAM MORESTMTS (meaning
call ram_query()) and RAM_MOREDATA (meaning call ram_nextbuf()}.

3.6.2 Input Arguments

1. Associated channel number - A four byte integer value
specifying the database channel associated with the query.

The channel argument is the number of the channel to be
used and should be the same as used in the corresponding
call to ram_query().

2. Number of output records - This is the address of a four
byte integer containing the desired number of records to be
retrieved per call. Several tokens have been defined in
(where else) ram_tokens.h to aid the user.

RAM FILL BUF
~IGNORE

fills the user's buffer
terminates retrieval

RAM IGNORE must be specified to end retrievals if there is
still data waiting to be retrieved into program variables

Upon return this argument will contain the actual number of
, records in the buffer.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

*/
*I

Relational Access Manager - User's Guide, V4.l

3. Output buffer - This is the address of the user's output
buffer specifying where any retreived data is to be placed.

The outbuf argument is a pointer to the beginning of a
contiguous space to use as an output buffer for this data.
This may be the base address of a complex data structure.

4. output buffer size - This is the address of a four byte
integer containing the size of the output buffer.

The outbufsize argument sets a limit on the number of bytes
from the base address which may be used by ram_nextbuf().

5. function pointer - Optional: oµtfuncptr is a pointer to a
function which takes the address in outbuf as an initial
argument and returns a pointer to a data structure instance
as described by the call to ram_bind(). The function must
be recursive but may either dynamically allocate the
structure or may traverse a previously allocated structure.

The form of a traversal or allocation function is:

or
next_ptr =traversal(current_ptr);

next_ptr =allocate(current_ptr);

where current ptr is RAM NULLPTR to start is returned as
next ntr when the traversal of the data structure is
coi!lPi'ete.

3.6.3 Output

66

1. The output returns a status token specify one of the following:

RAM NORM - successful completion of the call
RAM-FAILURE - unexpected catastrophe
RAM-MORESTMTS - there are more statements to execute. Call
ram-query yet again.
RAM-MOREDATA- more data is pending from the database. Call
ram-nextbuf yet again to fetch this data.

2. In addition to the status, ram_nextbuf has the potential of
updating user's output buffer, a pointer to the beginning
of the output buffer, and number of outrecs as described
above.

3. The app id argument will never be updated by ram nextbuf.
Failing to initialize the RAM_APP structure explicitly via a
call to ram_init() or else implicitly prior to invoking
ram nextbuf will result in the return of a RAM FAILURE
status. -

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

3.6.4 How to call ram_nextbuf

#include "ram_tokens.h"

calling_proq ()
{

/* defines used by this application */
#define BUF SIZE 100
#define CHANNEL_NUMBER O

int return code;
int outbufsize;
int outrecs;

/* size of output buf */

int chanum;
FUNCPTR outfunc();
union {

char outbuf[BUF SIZE];
struct { -

int parml[20);
} parms;

} out_buf;

/* number of output recs */
/* channel number */

/* output buffer */

/* id array *I

/******* CALL ram nextbuf **********/
*I

chanum = CHANNEL NUMBER;
outbufsize = BUF-SIZE;

67

outrecs = RAM_FILL_BUF; /* token specifying to fill buf */

return_code

}

'

= ram nextbuf(
-&app id,

chanum,
&outrecs,
&out buf,
&out'bufsize,
outfunc);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 68

3.7 ram_setinfo()

3.7.l Invocation and Argument Declarations

RETCODE ram setinfo(&app_id, channel_nwn, act_token, data_ptr)

long int app id; /* A unique application identifier
int channel nwn;
RAM TOKEN act token;
ANYTYPE *data_ptr;

3.7.2 SYNOPSIS:

This module sets various action flags held internally by the
database access routines. Action tokens as passed in the
argmnent act token determine whether or not certain errors are
to be treated as severe or merely warnings, whether certain
conditions are to raise an exception, and whether or not to
gather certain database and system information. Some action
tokens require a data argument and this is pointed to by the
argument data ptr. Each action token is prepended with
"RAM SET "· WARNING: NOT ALL ACTION TOKENS ARE SUPPORTED FOR
EVERY VENDOR DATABASE AND ENVIRONMENT. CODE SHOULD BE WRITTEN
NOT TO DEPEND ON NON-PORTABLE EFFECTS IF A VENDOR CHANGE IS
ANTICIPATED.

3.7.3 Input Arguments:

1. CHANNEL_NUM - the channel in which to set status

2. ACT TOKEN - a token indicating the action

3.

3.7.4

DATA PTR

output

address to data to be used. Note that the
data type is dependent on the token.

RAM SUCCESS - successful completion of the call
RAM FAILURE - unexpected catastrophe

ACTION TOKENS AND THEIR MEANINGS:

EXACT REQUEST sets an exception to be raised if other than
OUTRECS have been processed when data ptr is a BOOLEAN TRUE.

AUTOFLUSH sets the channel to automatically flush (i.e. dump) any
data remaining in the buffer after up to outrecs have been
processed if data_ptr is a BOOLEAN TRUE.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WR:ITTEN PERMISSION

*/

Relational Access Manager - User's Guide, V4.1

STACKING sets a flag which if data ptr is TRUE allows multiple
selects or retrieves to be processed without returning to the
caller. These are "stacked" or appended to the end of the data
already in the application output buffer. Data is bound to the
buffer as though RAM DYNAMIC had been set in ram bind() for any
select after the first. This provides an implied "union"
operation.

69

SET DMASK sets the current done mask. Bits set between the done
mask and the done status cause exceptions to be raised for the
particular meaning of the bits. If used, the caller must
understand the meaning of the bits and set them. This call can
be more efficient than setting one bit at a time via calls to
ram setinfo() if certain sets of conditions must be set and reset
during processing. Call ram setinfo() to set up the condition
bit by bit, then ram_getinfo() to make a copy of the done mask.
This can then be set into place with RAM SET DMASK any time
during the program. Britton Lee only. - -

CONTINUE sets an exception to be raised if more results are
available.

DBERROR sets an exception to be raised if a non-parse error
occurred in processing the statement on the database.

INTERRUPT sets an exception to be raised if current DML command was
interrupted.

ABORT sets an exception to be raised if transaction was aborted,
usually by deadlock detection.

DEADLOCK_RETRY causes the transaction to be automatically
resubmitted on deadlock detection.

OVERFLOW sets an exception to be raised if an arithmetic overflow
was detected.

DIVIDE sets an exception to be raised if divide by zero was
detected.

DUP sets an exception to be raised if duplicate tuples were
encountered.

TIMER sets an exception to be raised if the wallclock value for
the statement is available.

INXACT sets an exception to be raised if the next statement
executed will be inside a transaction. This means that a call to
commit or abort the transaction would be valid. It also implies
that some locks are being held until the transaction ends.

ROUND sets an exception to be raised if rounding occured on a
float ~ata type.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

UNDERFLOW sets an exception to be raised if underflow of a float
exponent occurred.

70

BADBCD sets an exception to be raised if an illegal BCD or BCDFLT
value was sent to the IDM.

TMINUTES sets an exception to be raised if the wallclock time is
available in minutes.

LOGOFF sets an exception to be raised if the application should
complete and log off. This allows for graceful exit from
applications when the database is to be brought down. The server
utility invocation RAM_SHUTDOWN -SAFE followed by RAM_SHUTDOWN -
OFF is used by the DBA.

VOLUME sets an exception to be raised if the current disk or tape
volume has been exhausted. It may also be set when the database
or the relation need more space.

OVERFLOW causes the system to ignore overflow and use largest
number.

DIVIDE causes the system to ignore divide by zero and use largest
number.

GET CLOCK causes the database process wall clock elapsed time
(from 1st byte of DML command to 1st byte of results or done token)
to be measured.

DELDUPS will cause duplicates to be deleted on update and
then generate a warning message.

ABORT ON ROUND aborts on float rounding.

IGNORE UNDERFLOW ignores exponent underflow on float and use o
instead.

IGNORE_BADBCD ignore bad BCD host data and use o instead.

DEDICATED causes dedicated time database time to be measured.

USE OPTIONS causes DML command options to be used at execute
time.

WAITING UPDATERS allows updaters to wait until a dump is finished
rather than disallowing them.

PROTECT OVERRIDE sets DBA protection override.

FOLDCASE will automatically foldcase (upper case to lower) on
character arguments.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

UPPERCASE will automatically force upper case on character
arguments.

AFTER FETCH will raise an exception immediately after a
successful call to fetch a tuple.

BEFORE FETCH will raise an exception before each call to fetch a
tuple.-

AFTER_STMT will raise an exception after executig any statement.

BEFORE STMT will raise an exception before attempting to execute
any statement.

71

TUPLES AFFECTED will raise an exception so the user may determine
how many tuples were affected by a statement.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

3.7.5 How to Use ram_setinfo()

calling__program{)
{

72

long int app id; /* A unique application identifier */
int channel num;

}

RAM TOKEN act token = STACKINGr
ANYTYPE *data__ptr = TRUEr

return code = ram setinfo(
- &app_id,

I*

channel num,
act token,
data__ptr
) r

** if cmdbuf points to the name of a DML command containing
** multiple select statements, the results will
** be concatenated into the outbuf.
*I
return code= ram_query(., cmdbuf, •• outbuf, •••)r

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 73

3.S. ram_getinfo()

3.S.l Invocation and Argument Declarations

RETCODE ram_getinfo(&app id, channel_num, act_token, ret_ptr)

long int app id;
int channel iium;
RAM TOKEN act token;
int-*ret_ptr;-

/* A unique application identifier

3.S.2 SYNOPSIS:

This module provides a uniform way for the application to
obtain information held internally by (or available to) the RAM
or the vendor database management system. The desired
information is always specified by a token and returned by an
address to the requested data. Action tokens are prepended with
"RAM GET "· WARNING: NOT ALL ACTION TOKENS ARE SUPPORTED FOR
EVERY VENDOR DATABASE AND ENVIRONMENT. CODE SHOULD BE WRITTEN
NOT TO DEPEND ON NON-PORTABLE EFFECTS IF A VENDOR CHANGE IS
ANTICIPATED.

ACTION TOKENS AND THEIR MEANINGS:

STATUS gets the current status, a detailed error code.

ERROR MSG returns a transalation of current status value
in a string pointed to by data_ptr.

DNCT gets the current number of rows processed.

CURSTMT gets an integer giveing the current statements number in
the DML command being executed.

*/

STMTTYP gets an integer token the type of the statement being executed.

STMTTYPES gets an array of integer tokens for the types of
statements in the current DML command.

TIMER gets the elapsed time for the current statement or DML command.

DSTAT gets the done status.

INXACT gets a Boolean representing whether or not a transaction
is being executed.

DMASK gets the current done mask.

NUMSTMTS gets an integer giving the number of statements in the
DML, coll!llland.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 74

UNUSED CHAN gets a value for the next channel available.

LOGDEV gets a pointer to a string containing the active logical device.

TMINUTES gets the time in minutes.

DBNAME gets a pointer to a string containing the active database
name.

LOGOFF gets a Boolean representing whether or not the application
should shutdown. This provides a means for graceful shutdown at
the application level. The programmer can issue a message to the
user or automatically rollback transactions as needed.

NATIVE CHANNEL gets a pointer to the database vendor equivalent
of a channel. Use of this token is not recommended.

RECSIN gets the number of record occurrances processed on input.

RECSOUT gets the number of record occurrances processed on output.

PARENT gets the parent channel.

CONTINUE gets a Boolean representing whether or not more data is
pending.

DBERROR gets a Boolean representing whether or not a database
internal error has occured. The particular error is may be
obtained by requesting STATUS.

INTERRUPT gets a Boolean representing whether or not the current
statement has been interrupted (e.g. via control C).

GET DMASK gets the current done mask. Bits set between the done
mask and the done status cause exceptions to be raised for the
particular meaning of the bits. If used, the caller must
understand the meaning of the bits and set them. This call can
be more efficient than setting one bit at a time via calls to
ram setinfo() if certain sets of conditions must be set and reset
during processing. Call ram_setinfo() to set up the condition
bit by bit, then ram_getinfo() to make a copy of the done mask.
This can then be set into place with RAM_SET_DMASK any time
during the program. Britton Lee only.

TIMER determines if an exception is to be raised if the wallclock
value for the query is available.

TMINUTES determines if an exception is to be raised if the
wallclock time is available in minutes.

GET CLOCK causes the database processing wall clock elapsed time
from 1st byte of DML command to 1st byte of done token to be
measured.

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

DEDICATED causes dedicated time database time to be measured.

RESPONSE TIME return response time in 1/60 seconds from the
database-process 1st DML col!lllland byte to 1st output byte.

IDMCPU TIME return Britton Lee DBP and DAC CPU time in 1/60
second'S.

INPUT_WAIT returns input wait time in 1/60 seconds.

MEMWAIT returns memory wait time in 1/60 seconds.

CPUWAIT returns time waiting for DBP or DAC to finish in 1/60
seconds.

DISKWAIT returns time spent waiting for disk in 1/60 seconds.

HOSTWAIT returns time spent waiting for host to consume the
output.

75

BLOCKED returns time spent blocked by another database process in
1/60 seconds - for example waiting for some shared mutually
exclusive resource such as write locks.

DACTIME return Britton Lee DAC (or DAC simulation routine) time
in 1/60 seconds.

OUTWAIT returns time spent waiting for an output buffer in 1/60
seconds.

CACHE_HITS returns the number of disk page cache hits.

DISKREADS returns number of disk reads.

QRYBUF USED returns the amount of query buffer space used in
bytes.-

QRY_PLAN returns the query processing plan.

TAPEWAIT returns the time spent waiting for tape.

TAPE_ERRORS returns the number of soft tape errors

TUPLES_AFFECTED returns the number of tuples affected by a
statement. This is only valid after an exception has been raised
by setting this toke with ram_setinfo().

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 76

3.8.3 Input Arguments:

1. APP_ID - a unique application identifier

2. CHANNEL NUM - the channel to which the information relates.

3. ACT_TOKEN

4. RET PTR

- a token indicating the information requested.

- on return this is the address containing to
place requested information. The caller
must allocate the appropriate data type
for the particular token except where noted
above.

3.8.4 outputs:
RAM SUCCESS - successful completion of the call
RAM=FAILURE - unexpected catastrophe

3.8.5 How to use ram getinfo()

calling_program()
{

}

long int app id; /* A unique application identifier */
int channel num;
RAM TOKEN act token = ERROR_MSG;
ANYTYPE *data~tr;

/*
** if ram query() returns an error
** determine the detailed nature of the error and print
** it.
*/
return code= ram query(.,,., •••);

if (return_code == RAM_FAILU:RE)
{

}

return_code = ram getinfo(
- &app_id,

channel num,
act token,
data_ptr
) ;

printf("%s\n",data_ptr);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 77

3.10 Ram_loaddefs()

3.10.1 Invocation and Arqument Declarations

RETCODE ram_loaddefs(&app_id, app_name, def_name)

int app id;
char *app_name;

/* a unique identifier for the application */
I*

char *def_name;

RAM TOKEN cmd_or_buf;

3.10.2 Synopsis

** a unique string identifying the
** application to the database
*/
I*
** a unique string identifying a
** specific buffer or DML command
** definition.
*I
I*
** a token indicating whether def name
** is a DML command definition or-a
** buffer definition.
*I

This module is normally used to load all the DML command and
buffer definitions which a given application, identified in the
database by the arqument app name, will use during a run of the
application. If the string arqument def name is not NULL, then a
single definition is loaded. The arqument gmd or buf is a
RAM TOKEN (RAM LOADCMD, RAM LOADBUF, RAM LOADALL) used to indicate
whether or not-def name refers to a DML command definition or a
buffer definition, or to all definitions associated with the task
or application. If RAM LOADALL is used, app name can not be
RAM NULL and def name is Ignored. This module only loads a
definition into the application instance; it does not make a
buffer definition the current definition. If the app name
arqument is RAM_NULL and def name is not, def name must be a
system wide unique definition name as it will not be qualified by
the task or application name.

Definitions are available to all channels run under the
application.

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 78

3.10.3

1.

2.

3.

4.

3.10.4

Input Arguments:

APP_ID -

APP NAME -

DEF NAME

CMO OR BUF -

Outputs:

a unique application identifier

a string name of the task or application name
to be used in qualifying the definitions to
be loaded. This is not necessarily the
program name, but is assigned by the DML
programmer when definitions for a new
application are created. This argument may
be NULL.

a string name of the definition to be loaded.
This argument may be NULL.

a token indicating the type of definition
requested, either for a buffer (RAM_LOADBUF), a
DML command (RAM_LOAOCMD), or all task related
definitions (RAM_LOADALL).

RAM SUCCESS - successful completion of the call
RAM=FAILURE - unexpected catastrophe

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 79

3.10.5

t

I*
**
**
**
**
*I

How to call ram_loaddefs()

:flinclude "ram tokens.h"
calling_prog(f
{

}

int
int
char

char

return_code; /* return code for RAM calls */
num chans; /* number of channels to init */
log-devs[RAM MAX CHANNELS] [RAM MAXDEVNAME]

- - - = {"idbO:"};/* logical
** device
** names
*I

dbnames[RAM_MAX_DATABASES] [RAM_MAXDBNAMEJ
= {"ajax_db11 };/* data base

** names
*/

RAM_TOKEN dml; /* DML token -
** RAM IDL or RAM_SQL
*/ -

RAM TOKEN cmd or buf = RAM LOADALL;
char app_name[] = {"update=ajax11 };

char def_name[] = {"\O"};

num chans = l; /* just open one channel (chan O) */
query_lang = RAM_SQL; /* queries will be in SQL */

return code = ram init(
- &app id,

num chans,
log_devs,
dbnames,
dml
) ;

if (return_code != RAM_SUCCESS)
{

printf("We have Initialization problems.\n");
}

Once the initialization is complete, load all the
definitions for this application so that
subsequent calls to ram_setdef() can make
them current.,,

return_ code = ram loaddefs(
- &app_id,

app name,
def-name,
cmd-or buf
) i

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 80

3.11 Ram_setdef()

3.11.1 Invocation and Argument Declarations

RETCODE ram_setdef(&app_id, channel, def_name, bind_type, in_or out)

int app id:
int channel:
char *def name:
RAM TOKEN-bind type;
RAM=TOKEN in_or_out;

3.11.l Synopsis

This module is used to make a definition previously loaded
using ram loaddefs() the current input or output buffer
definition, depending on the value of in or out (~ IN versus
RAM_OUT). The value of the token bind type-is used to set the
bind type as being RAM_ARRAY or RAM_RECORD, but may not be
RAM DYNAMIC. If both bind tvoe and def name are RAM NULL, the
corresponding current input or current output buffer-is made
inactive. If only de(_name is NULL, the current input or output
buffer bind type is reset to the value of the argument bind type.

3.11.2 Input Arguments

1. APP_ID - a unique application identifier

2. CHANNEL - a unique channel identifier

3. DEF_NAME - a string name of a buffer definition to
be made the current buffer definition.

4. BIND_TYPE - a RAM_TOKEN designating the way in which the
input or output buffer is to be interpreted.
The possible values are RAM ARRAY or
RAM_RECORD. -

5. IN_OR_OUT - a RAM TOKEN designating whether the buffer
definition is to be used for input or output.

3.11.3 output Arguments

RAM SUCCESS successful completion of the call
RAM-FAILURE - unexpected catastrophe

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relat ional Access Manager - User's Guide, V4.l 81

3.11 . 4

I*

How to call ram_setdef ()

#include "ram tokens.h"
calling_proq (f
{

int
int
int
int
char

char

app id;
channel;
return code; /* return code for RAM calls */
num_chans; /* number of channels to init */
loq_devs(RAM_MAX_CHANNELS] (RAM_MAXDEVNAMEl

_. {"idbO:"}:/* logical
** device
** names
*/

dbnames[RAM_MAX_ DATABASES J [RAM_MAXDBNAME]
= { "ajax db"};/* data base

- ** names
*/

RAM_TOKEN dml: I* DML token -
** RAM_ IDL or RAM_SQL
*I

RAM TOKEN cmd or buf = RAM LOADALL;
RAM TOKEN in or out - RAM OUT;
RAM-TOKEN bind_type = RAM ARRAY1
char app_name[] = {"update_ajax"};
char def name[] = {"\O 11 };

num cbans = 1; /* just open one
query_ lanq ... RAM_SQL; /* queries
return code = ram init(

- - &app id,
num chans,
log_devs,
dbnames,
dml
) ;

if (return_code 1- RAM_SUCCESS)
{

channel (chan O) */
will be in SQL */

printf("We have Initialization problems.\n");
}

** once the initialization is complete, load all the
** definitions for this application so that
** subsequent calls to ram setdef () can make
** them current. -
*I

return_code • ram loaddefs(
- &app_ id,

app_name,
def name,
cmd- or buf
) ; - -

AT CONFIDENTIAL - 00 NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 82

I* ** Prior to calling ram query() on channel o, make a particular
** definition the output definition.
*/

}

strncpy(&def name[O],"upd list11 ,strlen("upd list");
channel = 01 - - -
return_code = ram setdef(

- &app id,
channel,
def name,
bind type,
in or out
) ;- -

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 83

3.12 Ram_getobj()

3.12.1 Invocation and Argument Declarations

RETCODE ram getobj(&app_id, obj_name, obj_id)

int app id;
char *obj name;
int *Obj_id;

3.12.1 Synopsis

This module loads all the definitions (both buffer and
DML command) associated with an object specified by the argument
obi name and makes them available to any channel running under
the=apo id. The module returns an integer identifier that is
uniquefor the life of the app id process. This number has no
global or database significance. For a given object, a DML command
has predefined input and output buffers. These are made the
current definitions as soon as the DML command owned by the object is
invoked if the object has been made current with ram_setobj().

3.12.2

1.

2.

3.12.3

1.

Input Arguments

APP ID a unique application identifier.

OBJ NAME a unique object name, known to the database.

Output Arguments

OBJ ID an integer identifer for the object, unique
during the life of the app id process.
This number is passed to ram_setobj()
to refer to the object in the future.

2. RAM_SUCCESS - successful completion of the call

RAM_FAILURE - unexpected catastrophe

'

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l 84

3.12.4

I*

How to call ram getobj{)

#include "ram tokens.h"
calling_prog()
(

app_id;
channel;

int
int
int
int
char

return code; /* return code for RAM calls */
num chans; /* number of channels to init */
log-devs[RAM MAX CHANNELS] [RAM MAXDEVNAME]

- - - = {"idbO:"};/* logical
** device
** names
*I

char dhnames(RAM MAX DATABASES] [RAM MAXDBNAME]
- - = {"ajai db"};/* data base

- ** names
*I

RAM TOKEN dml; /* DML token -
** RAM IDL or RAM_SQL
*I -

RAM TOKEN cmd or buf = RAM LOADALL;
RAM TOKEN in or out = RAM OUT;
RAM-TOKEN bind type = RAM-ARRAY;
int-obj id; - -
char obj name [) = ("my object" } :
char app-name[] = {"update ajax"};
char def name[) = {"\O -
num_chans = l; /* just open one
query_lang = RAM_SQL; /* queries

return code = ram init(
- &app id,

num Chans,
log-devs,
dbnames,
dml
) :

if (return_code != RAM_SUCCESS)
{

"} 1
channel
will be

(chan O) */
in SQL */

printf("We have Initialization probl.ems.\n");
}

** Once the initialization is complete, load all. the
** definitions for this object so that
** subsequent calls to ram setobj() can make them current.
*I

return code

' ' }

=ram getobj(
- &app id,

obj name,
obj-id
); -

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PER.MISSION

Relational Access Manager - User's Guide, V4.l

3.13 Ram_setobj()

3.13.0 rnvooation and ArgUment Declarations

retu:rn_code • ram_setobj(&app_id, channel, obj_id)

int app_id;
int channel;
int obj_ id:

3.13.l Synopsis

This module makes all the definitions (both buffer and
DML command) associated with an object specified by the
argument obi id available to cbannel running under the
apn id. The-module uses an integer object identifier that
isreturned by ram getobj(). This number has no global or
database significance.. For a given object, a DML collimand has
predefined input and output buffers. These are made the
current definitions as soon as the DML command owned by the
object is invoked if the object has been made current with
ram'"""setobj ().

3.13.2

1.

2.

3.

J.13.3

Input Arguments

APP_ID

CHANNEL

OBJ ID

a unique application identifier.

a unique channel identifier.

an integer identifer for the object, unique
during the life of the app id process.
This number is obtained by a previous
call to ram_getobj{).

OUtput ArgUlllents

RAM SUCCESS - successful completion of the call

RAM_FAILURE - unexpected catastrophe

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

85

Relational Access Manager - User's Guide, V4.l 86

3.13.4 How to call ram setobj()

#include "ram tokens.h"
calling_prog()
{

int
int
int
int
char

char

app id;
channel;
return code; /* return code for RAM calls */
num chans; /* number of channels to init */
log-devs[RAM_MAX_CHANNELS] [RAM_MAXDEVNAME]

= {"idb0: 11 };/* logical
** device
** names
*I

dbnames[RAM MAX DATABASES] [RAM MAXDBNAME]
- - = {"ajax db"};/* data base

- ** names
*I

RAM TOI<EN dml; /* DML token -
** RAM IDL or RAM_SQL
*I -

RAM TOI<EN cmd or buf = RAM LOADALL;
RAM TOI<EN in or out = RAM OUT;
RAM-TOKEN bind type = RAM-ARRAY;
char app name[]= {"update ajax"};
char obj-name[] = {"general ledger"};
int obj Id; -
num_chans = l; /* just open one channel (chan 0) */
query_lang = RAM_SQL; /* queries will be in SQL */

return code = ram init(
- &app id,

num chans,
log devs,
dbnames,
dml
) ;

if (return_code != RAM_SUCCESS)
{

printf(11We have Initialization problems.\n");
}

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1

I* ** Once the initialization is complete, load all the
** definitions for this application so that
** subsequent calls to ram_setdef() can make
** them current.
*/

return_code

I*

=ram getobj(
- &app id,

obj na:me,
obj-id
); -

** Prior to calling ram query() on channel o, make
** the object current on the channel.
*I

I*
}

channel = O;
return_code = ram setobj(

- &app id,
channel,
obj id
) ; -

** Now simply invode a DML command known to the object.
*/

return code= ram_query(&app_id, channel, •••);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

87

Relational Access Manager - User's Guide, V4.l 88

3.14 Ram_setexc()

3.14.0 Invocation and Argument Declarations

return_code = ram_setexc(excfunc, exc_name, action)

FUNCPTR excfunc();
char •exc name;
RAM TOKEN-action;

/* ptr to the handler function returning int */
/* name of the exception or a pattern */
/* action after return from handler */

3.14.l Synopsis

Many of the conditions that may be set in with calls
to ram_setinfo() cause exceptions to be raised. When such
an exception specified by exc name is raised, it can be
cause a user defined function pointed to by excfunc to be
executed automatically before exiting or continuing
(RAM EXIT or RAM CONTINUE) according to the value of the
arguiiient action.- Ram setexc() is not specific to a given
app id or channel. -

3.14.2 Input Arguments

1. EXCFUNC

2. EXC_NAME

3. ACTION

a pointer to a user defined function
which will handle exception processing.

the name of the exception to be handled,
which is the token in the call to ram setinfo().

a RAM_TOKEN indicating whether, on exit from
the user defined function, processing should
continue from the point the exception was
raised or the program should exit.

3.14.3 output Arguments

'

RAM SUCCESS - successful completion of the call

RAM_FAILURE - unexpected catastrophe

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.l

3.14.4 How to call ram_setexc(}

calling_prog()
{

I*

*/
I*
**
**
*I

I*

FUNCPTR excfunc = myhandler();
char *exc name= {"EXACT REQUEST"}; - -
RAM_TOKEN action = RAM_EXIT;

RAM TOKEN token = RAM_EXACT_REQUEST;

NOTICE - the data declarations for
ram_query() have been omitted.

Set an exception to be raised if the number of rows
affected is not the same as outrecs.

return code = ram setinfo(
- &app id,

channel,
token,
data_ptr
) ;

** Set up a function to handle the exception
** if it occurs.
*/

return code

/*

= ram setexc(
- excfunc,

exc name,
action
) ;

** Suppose that the DML command in cmdbuf affects exactly
** one record.
** Call ram_query() with outrecs equal to 1.
**
*/

outrecs = l;
return code = ram query(

&app id,
channel,
RAM CMD, /* execute a DML colllllland */
cmdbuf,
&in obj,
&inbufsize,
&inrecs,
&out obj, /* e.id will be placed here */
&outbufsize,
&outrecs,
depchan, infunc, outfunc);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

89

Relational Access Manager - User's Guide, V4.l

I* ** Now call the same function with outrecs equal to 2.
**
*I

/*

outrecs = 2;
return_code = ram query(

&app id,
channel,
RAM CMD, /* execute a DML command */
cmdbuf,
&in_obj,
&inbufsize,
&inrecs,
&out obj, /* e.id will be placed here */
&outbufsize,
&outrecs,
depchan, infunc, outfunc);

** The following never prints.
*I

printf("Exiting normally.\n");
}

/* Define the handler routine. */
int myhandler()
{

}

'

printf("Wrong number of records affected. Exiting ••• \n"):
return(O);

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

90

_,

Relational Access Manager - User•s Guide, V4.l 91

4.1 Vendor Database

PART IV

ENVIRONMENT SPECIFICS

4.1.l Britton Lee IDM
441.2 oracle

Several notes are relevant regarding the use of RAM with
Oracle.

• The DML is always SQL.

* Only those ram setinfo() and ram getinfo() tokens which are
noted as [ORACLE] followinq their definition in the manual
pages may be used with Oracle.

* Oracle does not support DML commands: a special utility
(ram compile) is provided so that this capability is
available through RAM.

* oracle limits the number of parameters per statement to nine.

* Each RAM p,pp id corresponds to an lda/hda pair. Thus, a
single username/password may be active at any given time on
a single app id • •

* The database name in ram init() corresponds to an oracle
instance. -

* The device name in ram_init() corresponds to an Oracle
(remote) database location.

* Passwords and uids take on the oracle defaults unless an
explicit CONNECT is issued. The CONNECT controls all open
channels for an app_id. This controls security, permissions
and access.

4.1.2.2 UTILITIES

RAM utilities require several tables. These tables must be
created using the script "ram.create.sql" and can be done from
SQLPLUS using "iram_create". -

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

Relational Access Manager - User's Guide, V4.1 92

RAM_COMPILE - DML command definition utility

The utility ram_compile accepts as input an ASCII file
containing SQL statements. The statements may contain parameters
introduced by the special preifx symbol "&" and terminated with
white space. The numeric sort order of parameter names, if all
numeric, will determine the input parameter order when the
command is processed. Otherwise, if any parameter contains a
non-numeric character, the ASCII sort order will determine the
input parameter order when the command is processed. The input
file may be created with any ASCII editor which does not insert
control characters into the file. The output is inserted into a
table in the ORACLE database named "ram commands". The user may
link applications by name to command definitions using the script
"ram appcmds.sql" which takes an application name (up to 30
characters) and a command name (up to 30 characters) as
parameters, in that order. DML commands created using
ram compile may be loaded into the application using
ram=loaddefs ().

Invocation and Command Line Arguments

ram compile inf ilename username/password

RAM BUFFERS - DML buffer definition utility

The SQL*Forms form RAM BUFFERS is used to define a buffer.
It allows the user to name the buffer defintion and define the
order, data type, offset, and length of each program variable
which is to occur in the buffer. Buffer definitions created in
this manner may be loaded into an application using
ram loaddefs(). For details on operating SQL*Forms see your
Oracle documentation.

Invocation and Command Line Arguments

$runform ram buffers username/password

AT CONFIDENTIAL - DO NOT DISTRIBUTE WITHOUT WRITTEN PERMISSION

